Statically checking confidentiality via dynamic labels

Bart Jacobs
Department of Computer
Science
Radboud University Nijmegen
P.O. Box 90100, 6500 GL
Nijmegen, The Netherlands

bart@cs.ru.nl

ABSTRACT

This paper presents a new approach for verifying confiden-
tiality for programs, based on abstract interpretation. The
framework is formally developed and proved correct in the
theorem prover PVS. We use dynamic labeling functions
to abstractly interpret a simple programming language via
modification of security levels of variables. Our approach
is sound and compositional and results in an algorithm for
statically checking confidentiality.

Keywords: Confidentiality, Abstract Interpretation, For-
mal Verification, Static Analysis, (Higher Order) Theorem
Proving

1. INTRODUCTION

Contemporary programming languages provide only rudi-
mentary access control modifiers and cannot assure high
level security properties such as confidentiality and integrity.
Thus it is important to provide tools which can check such
properties, and languages in which to specify these.

This paper focuses on confidentiality as non-interference [16].

Informally this notion means that low level (public) output
values are completely independent of high level (secret) in-
put variables. More precisely, confidentiality should make it
impossible to learn the value of high level variables by ma-
nipulating low level input variables. We will ignore covert
channels [18], such as those based on timing or resource
consumption, in this paper.

We introduce a new algorithm for statically checking con-
fidentiality based on abstract interpretation [10]. Most meth-
ods for statically checking confidentiality are based on type-
checking [5, 26], especially for small fragments of languages
like ML [22] or Java [25]. We also look at such a language,
a small Turing-complete programming language with side-
effects. In Section 6 we will discuss how to extend it to a

*Corresponding author

Wolter Pieters
Department of Computer
Science
Radboud University Nijmegen
P.O. Box 90100, 6500 GL
Nijmegen, The Netherlands

wolterp@cs.ru.nl

%
Martijn Warnier
Department of Computer
Science
Radboud University Nijmegen
P.O. Box 90100, 6500 GL
Nijmegen, The Netherlands

warnier@cs.ru.nl

language with more complex language features. The main
contributions of this paper are:

e a new static algorithm for checking confidentiality

e this algorithm is developed and proved sound within
the theorem prover PVS [23, 20]

Another (minor) contribution of this paper is that we al-
low temporary breaches of confidentiality. Confidentiality
can be seen as a property that holds for a complete program.
This means in particular that confidentiality can temporarily
be broken, as long as it is restored before the program ter-
minates’. This is similar to the use of invariants in program
verification techniques. A dynamic labeling function is used
to keep track of security levels. Consider the program frag-
ment | := h ; | := 2, where [has initial security level Low,
h has initial level High and High > Low. The next example
illustrates how the security levels change by executing this
program:

Example 1

I : Low I=h Il : High
h : High '_ h : High

I : Low
=2 {h : High}

Informally, the assignment ! := h breaks confidentiality since
a variable with security level High is assigned to a variable
of level Low which results in secret information flowing to
public variables. However, the assignment [:= 2 restores
confidentiality. Every completed execution of this program
will have the same result: the low variable [will have value 2.
This use of dynamic labels allows us to look at confidentiality
for entire programs. Hence, our algorithm in essence states
that checking confidentiality for a program is the same as
checking if all labels are smaller or equal, after termination
of a program, than their initial labels. If this is the case the

Permission to make digital or hard copies of all or part of this work for U . 1. . 1
personal or classroom Use is granted without fee provided that copies arePrO8ram maintains conﬁden.tlahty. .In Section 4 we will give
not made or distributed for profit or commercial advantage and that copies & formal justification for this algorithm.

bear this notice and the full citation on the first page. To copy otherwise, to 7 — .
republish, to post on servers or to redistribute to lists, requires prior specific - Note that confidentiality can in general only be restored

permission and/or a fee. i
WITS’05,January 10, 2005, Long Beach, CA, USA.
Copyright 2005 ACM 1-58113-980-2/05/0135.00.

in the context of sequential programs. For multi-threaded
programs such temporary breaches of confidentiality should
not be allowed.

In order to deal with implicit information flow a special
variable lenv, called the environment level?, is used which
stores the security level of ‘the context’. An example of
implicit information flow is seen in the program fragment
if(h > 2) then [:= 0, where h has security level High, I
level Low and the environment level has initial level Low.
Example 2 shows the labels of [and h, and lenv at each
point in the execution of this program:

Example 2
lenv : Low lenv : High
l : Low if(h > 2) l : Low
R : High R : High
lenv : High
1:=0 l : High
R : High
Under normal conditions the assignment [:= 0 does not

break confidentiality. However, the assignment in this par-
ticular context breaks confidentiality, because it is carried
out under a high guard, thereby implicitly leaking informa-
tion from a high to a low variable. The environment vari-
able always has the same security level as the highest secu-
rity level of the conditionals that guard the context. The
variable [in Example 2 gets the same security level as the
mazimum of the security level of 0, which is Low, since it is
a constant, and the environment level, which is High since
the highest (and only) security level of the conditionals in
this context is A > 2 which has level High. The new label of
the variable [is thus higher than its old label and this code
fragment breaks confidentiality.

The paper starts by explaining some notation and basic
concepts. It then discusses in Section 3 how the dynamic la-
beling transition functions are defined. A formal proof that
every program identified by our approach as confidential is
indeed confidential (soundness) together with the algorithm
for statically checking confidentiality appears in Section 4.
Section 5 illustrates the working of this algorithm on some
examples. Then in Section 6 we will discuss how our ap-
proach can be extended to more realistic programming lan-
guages. Section 7 discusses related work. The paper ends
with conclusions and suggestions for future work.

2. PRELIMINARIES

In this and later sections we abstract away from the spe-
cific PVS syntax and formalization. Instead a more logi-
cal/mathematical notation is used to present our work as
general as possible.

We assume a finite lattice with carrier type L, bottom el-
ement |, top element T, partial order relation < and join
L. This lattice is used to represent the security levels. In
this paper we will, in examples, only use the boolean lat-
tice with values High and Low. The definitions and results
however hold for general finite lattices. A special variable
conf:L, called the confidentiality level, is used to split the
lattice L into two parts:

*Denning [13] calls the environment level a program counter
label.

fconf = {b:L | conf <b}
Jeonf = {b:L|conf £ b}

The environment level lenv:L has initial value 1 and can
only be changed when a conditional statement is analyzed.
The formal dual of confidentiality, which is a form of in-
tegrity [6], can be analyzed by ‘flipping’ the lattice. This
fixes all the high variables, thereby ensuring that all high
output variables are completely independent of low input
variables.

A location in memory is represented with type Loc. The
memory, written as M, consists of mappings from Loc to
values. A labeling function lab : Loc — L then maps memory
locations to the security levels given by L.

We consider a small imperative programming language P
with statements and expressions (with side-effects).

Definition 1 The syntax for the programming language P
is given by

Expressions e = wv:=e|ei==ex|e; <ez|
e1t+ex|vtt|v|c
Statements s = wv:=e|s;;sy|if-then(e)(s) |
if-then-else(e)(s1)(s2) |
while(e)(s)
where == is equality, := is assignment, v € Loc are vari-

ables and c are constants.

Statements in P are programs. The semantics of a state-
ment, which can either terminate or hang, has type M —
1+ M, where 1 = {*} and + is disjoint union. The seman-
tics of an expression, which has an additional result value of
type Out, has type M — 14 (M x Out), where Out can be int,
bool etc. We do not give a formal denotational semantics
for our language, since any standard semantics (for instance
from [19]) will suffice for our purpose.

In order to give a formal definition of confidentiality we
first define a relation Rel between memory states, which is
parametrized by a labeling function and confidentiality level.

Definition 2 Let lab : Loc — L be a labeling function and
conf € L a confidentiality level. Then the relation Rel is de-
fined as

Rel(conf,lab) C M x M =
{(z,y) € M x M | VL : Loc.conf £ lab(l) = z(l) = y(1)}

Thus Rel(conf,lab) > (z,y) says that x and y can only dif-
fer for ffconf variables. Using the relation Rel we can now
give a semantic definition of termination-insensitive non-
interference, our notion of confidentiality.

Definition 3 Let p be a program and lab : Loc — L a label-
ing function. Then Confidentiality is defined as

Confidential(p, lab) =

Vz,y : M.Yconf : L.
Rel(conf,lab) 3 (z,y) = [p](z) # * A [p](y) # * A
Rel(conf, lab) > ([p](x), [P](¥))

Where [] refers to the denotational semantics and * is non-
termination.

Definition 3 states that if all variables with security level
in {lconf are equal for all (memory) states z and y before
execution of program p, then these same variables should
again be equal in the new states obtained by executing pro-
gram p for all conf. This guarantees that |} conf variables
are independent of {jconf variables.

Notice that by quantifying over conf and splitting the lat-
tice in two parts 1 conf and | conf we can reason about
security policies defined by security levels in the lattice at
once. Furthermore, notice that the labeling in the defini-
tion of confidentiality is static in the sense that both before
and after execution of p the same labeling lab is used to
distinguish fjconf from Jjconf variables.

3. LABELING TRANSITION FUNCTIONS

For every language construct in P we define a function
that given an initial labeling and an environment level yields
a labeling after execution of the statement or expression.
This function gives an abstract interpretation of the state-
ment or expression in terms of modification of security lev-
els. We have two labeling transition functions, one for state-

ments, called labStat, and one for expressions, named labExpr.

The function labExpr has an additional result, namely the
level of the result of the expression.

The signature for labExpr and labStat, where s is a state-
ment and e an expression, is then given by:

labStat(s) ((Loc—>L)xL) — (Loc—1Ll)

labExpr(e) ((Loc - L)xL) — ((Loc—L)xL)

We can now define the labeling transition function labStat
for all statements in P.

Definition 4 Let lab be a labeling function and lenv the en-
vironment level, the labeling transition function labStat is
then defined as:

labStat(v := e)(lab, lenv) =
let (lab’, Ires) = labExpr(e)(lab, lenv)
in lab’[(Ires U lenv) / lab’(v)]

labStat(s1;s2)(lab, lenv) =
labStat(s2)(labStat(s1)(lab, lenv), lenv)

labStat(if-then(b)(s))(lab,lenv) =
let
(lab’,lres) = labExpr(b)(lab, lenv),

lenv’ = Ires Ll lenv
in labStat(s)(lab’,lenv’) U lab’

labStat(if-then-else(b)(s1)(s2))(lab, lenv) =

t
(lab;lres) = labExpr(b)(lab, lenv),
lenv’ = Ires L lenv
in labStat(s1)(lab’, lenv’) U labStat(sz2)(lab’, lenv’)

labStat(while(b)(s))(lab, lenv) =
L] iterate(b)(s)(lab, lenv) (i), where

i

iterate(b)(s)(lab, lenv)(n) =

let
(lab’,lres) = labExpr(b)(lab, lenv),
lenv’ = Ires L lenv,
lab” = labStat(s)(lab’, lenv’)
m
IF n=20
THEN lab’

ELSE lab’ L iterate(b)(s)(lab”,lenv’)(n — 1)

where i and n are natural numbers, / is function update,
and < and U are defined point-wise on labeling functions.

Note how the environment level in the labeling function for
v = e is used to give v the security level of the result of
expressions e or, if we are working in the context of a higher
conditional, the level of the environment.

When the boolean expression b in the labeling function
for if-then evaluates to false we only have to update the la-
beling function lab with the new labeling function obtained
by executing b (we allow b to have side-effects). However if
b evaluates to true, then the statement s is also executed. So
we have to evaluate labStat(s) with as arguments the label-
ing function obtained by evaluating b and as environment
level the maximum of the old environment level lenv and
the security level of the result of expression b. We take the
point-wise maximum of the two new labeling functions as
the new labeling function, because we only have an abstract
semantics and so we do not know if b is true or not.

This abstract semantics forms the source of the lack of
completeness of our formalization. The static framework is
sound but not complete in the sense that some programs
which do maintain confidentiality will be marked as possi-
bly violating confidentiality. A typical example of this is the
code fragment 1:=h; 1:=h-1, where after evaluation 1 will
always have the value 0. Our approach (and other static
approaches) will mark this code as violating confidential-
ity. Since the problem of confidentiality is in general unde-
cidable we have to choose between a decidable sound —but
incomplete— method or an undecidable but sound and com-
plete method.

The idea behind the labStat part for the while is that we
calculate a least fixed point for the iterate function. Since
we use a finite lattice, and the join ensures that the iterate
function is increasing, such a fixed point always exists and is
reachable in finitely many iterations. Notice that we do not
check (non)-termination of the loop; this should be proved
by a semantic evaluation. The other parts of the definition
of labStat should hopefully be self-explanatory.

The function labExpr is defined in a similar fashion for all
expressions in P.

Definition 5 Let lab be a labeling function and lenv the en-
vironment level, the labeling transition function labExpr is
then defined as:

labExpr(c)(lab, lenv) = (lab, 1)

labExpr(v)(lab, lenv) = (lab, lab(v))

labExpr(el op e2)(lab, lenv) =
let (lab’,Ires) = labExpr(el)(lab, lenv),

(lab”,Ires’) = labExpr(e2)(lab’, lenv)
in (lab”, Ires U Ires”)

labExpr(v++)(lab, lenv) =
(lab[(lab(v) U lenv) / lab(v)],lab(v) U lenv)

labExpr(v := €)(lab, lenv) =
(labStat(v := e)(lab, lenv), w2 (labExpr(e)(lab, lenv)))

where v € Loc, L is defined point-wise on labeling functions,
/ is function update, T is projection and op is either ==, +,
—, < or>.

4. STATIC ALGORITHM

Confidentiality requires that labels, for an entire program,
may only decrease. We call this property decreasingness. In-
tuitively, this can be understood as follows: a variable with
initial security level High that has level Low after execution
of a program does not break confidentiality, since it is im-
possible to obtain the original value of the high variable.
However a variable with initial security level Low that has
level High after execution of a program may leak confiden-
tial information, since it gives information about the initial
value of some higher variable. In this section we only give
definitions and proofs for statements. They are similar for
expressions are similar and do not add any new insights.

Definition 6 Let s be a statement and lab a labeling func-
tion. The predicate decreasing on a statement s is then de-
fined as:

Decreasing(s, lab) = labStat(s)(lab, L) < lab

where < is point-wise ordering on labeling functions of type
Loc — L.

Notice that we set the initial environment level to L. Only
by the use of conditionals can it change to a higher security
level.

Since we only look at whole programs (so confidentiality
can temporarily be broken), the labeling transition functions
we use do not directly determine whether a program is con-
fidential. In order to prove that our approach is sound we
first define a technical property, which we simply call Good.

Definition 7 If s is a statement, then goodness of s is de-
fined as

Good(s) =
Vlab : Loc — L.Vlenv : L.
(Vz,y : M.Vconf : L.
[s](z) # * A [s)) # * A
(Rel(conf, lab) 3 (z,y) =
Rel(conf, labStat(s)(lab, lenv)) 3 ([s](x), [s]())))
A
(Vz : M.Vb : Loc.
[s)(2) # * A 2(b) # [S)(2)(b) =
lenv < labStat(s)(lab, lenv)(b)

First of all notice that we always assume that s terminates.
Goodness is then defined in terms of two conjuncts. The

first conjunct states that if all variables at locations with
security level || conf have equal values in states x and y,
then all variables which have security level |lconf after the
execution of statement s (both in « and y) should again have
the same (dynamic) values.

The second conjunct states that if the value of any vari-
able changes by executing s, then the security level of this
variable should at least be the same as the environment level
lenv. This second requirement is an invariant property that
we will need to prove that the labeling transition functions
for conditional statements are good.

Definition 7 furthermore shows that our abstract labeling
transition functions are related to the underlying (standard)
denotational semantics via goodness, hence our work is a
form of abstract interpretation [10].

At this point we can prove our main theorem. It states
that our approach is sound i.e., that goodness together with
decreasingness implies confidentiality.

Theorem 1 Soundness
Vs € Statements.Vlab : Loc — L.
Good(s) A Decreasing(s, lab) = Confidential(s, lab)

Proof Pick a conf : L,lab : Loc — L and z,y : M such
that Rel(conf,lab) > (z,y), a location ! and statement s
with [s](z) # *, [s](y) # * and [s](z)(1) # [s](y)(!). Then
lab(l) should at least be conf to satisfy the definition of con-
fidentiality i.e., conf < lab(l). Goodness gives us conf <
labStat(s)(lab, L)(I), where we instantiate with L for the
environment level. From decreasingness it follows that

labStat(s)(lab, L)(I) < lab(l). Then by transitivity we get
conf < lab(l). O

We can use Theorem 1 to formalize an algorithm for stat-
ically checking confidentiality. This is accomplished in two
steps.

Proposition 1

Vs € Statements.(Vz : M.[s](z) # *) = Good(s)

Proof By induction on the structure of s. Al cases except
for the while are straightforward. The while case is by
induction on the number of iterations in memory x and in-
duction loading on the number of iterations in memory y.

O

Proving this proposition is where most of the effort of our
work has been concentrated. Here it turned out that formal-
izing our model in the theorem prover PVS was very useful
since the many small subtleties we encountered can easily be
overlooked if one tries to do these proofs on paper. Proving
the while-case especially formed a challenge.

Corollary 1 then gives us our algorithm.

Corollary 1
Vs € Statements.Vlab : Loc — L.
(Vz : M.[s](x) # %) A Decreasing(s, lab) =
Confidential(s, lab)

Statically checking confidentiality then involves applying the
labeling transition functions and checking if decreasingness
holds. The labeling transition functions form a set of rewrite

rules. These rewrite rules are terminating because either no
more rules can be applied, or only the iterate rule can
be applied. It the latter case the security levels will have
to stop changing at a certain point (because the lattice is
finite), thus a fixed point will be always be reached.

Since the algorithm is both sound and terminating it can be
used as a static algorithm for checking confidentiality.

5. EXAMPLES

In this section we illustrate the use of our algorithm with
some simple example programs. We shall first apply it to
Example 1 from the introduction, using the boolean lattice
as representation for the security policy. The initial lab is
{l: Low, h : High} and the environment level is Low:

labStat(l := h;1 := 2)({l : Low, h : High}, Low)
labStat(l := 2)(labStat(l := h)({l : Low, h : High}, Low), Low)

labStat(l := 2)({! : High, h : High}, Low)

{I: Low, h : High}

We did not show the trivial steps of applying labExpr to
constants or variables. Since the labeling stays the same,
decreasingness holds and thus we conclude by corollary 1
that the ‘program’ maintains confidentiality.

To show the use of the environment level we look at the
program if-then-else(h == 1)(I := 1)(I := 2);l := 0,
where the security level of h is High and the level of [is
Low. Using the informal notation from the introduction the
analysis of this program works as follows:

Example 3

lenv. : Low if lenv : High
l : Low (h == 1) l : Low
h : High T h : High
I =1 lenv : Low

or ; l : High

I = 2 h : High

lenv. : Low
l : Low
h : High

Figure 1 shows how our algorithm is applied to Example 3.
We again use {l : Low, h : High} for an initial lab and the
initial environment level is Low.

Decreasingness holds again for this example since the label-
ing before and after applying labStat and labExpr is exactly
the same. We conclude by corollary 1 that the program
maintains confidentiality. This example also illustrates that
statically checking confidentiality with our algorithm is fea-
sible. The different steps in applying the labeling transition
functions only involve substitutions and calculating maxi-
mums. We have run this example in PVS where we loaded

labStat en labExpr as automatic rewrite rules. It took a frac-
tion of a second to prove confidentiality for this example.
The following program fragment shows -in an abstract
way- how we process a while. In this piece of code h initially
has security level High, 11,12 and 13 start with security level
Low and the environment level lenv has initial level Low.

Example 4

while (11 > (11 := 12)) {11 := h; 13++}

The table in Figure 2 shows the security levels of the dif-
ferent variables after each iteration, where zero iterations
means that only the conditional of the while is evaluated,
one iteration means that the conditional is evaluated, then

the body and then the conditional again, etc.

| Iterations [h [11 [12 [13 [lenv ‘
0 High | Low | Low | Low | Low
1 High | Low | Low | Low | High
2 High | High | Low | High | High
3 High | High | Low | High | High

Figure 2: Security levels of variables after each while
iteration

Notice that after two iterations a fixed point is reached.
The algorithm will stop at this point. Both 11 and 13 have
a higher security level then before execution of this program
fragment, hence it does not maintain confidentiality. We
will not show the application of the rewrite rules here. Us-
ing PVS we evaluated this example -using automatic rewrite
rules- in about 5 seconds, after which the program was iden-
tified as breaking confidentiality. The time needed to check
this small example is of course too long for a practical tool.
But an optimized implementation of our algorithm (without
the overhead of PVS) should be fast enough for reasonable
size programs.

6. EXTENSIONS

We ultimately wish to extend our approach to a realistic
programming language like (sequential) Java. This leads to
a number of additional challenges which are briefly discussed
in this section.

Indistinguishable objects and heaps

Adding objects is in principle straightforward, but unlike
the primitive types (such as the booleans and integers which
are used in this paper) simply comparing objects by looking
at reference equality will not be enough to establish confi-
dentiality. One particular problem arises if we create new
objects. Consider the next example:

Example 5
if (high > 0) then Object o := new Object();

Since we have a high guard in this example, for some val-
ues of memory states the then part will be evaluated and
for others not. So after this statement the heaps can be
unbalanced. In our current work we only compare memory
locations, but in this situation this will not be enough. If the
heaps are unbalanced the same location in the two heaps can
refer to different objects. In essence, we want that objects

labStat(if-then-else(h == 1)(I := 1)(I := 2);1 := 0)({l : Low, h : High}, Low) —»
labStat(l := 0)(labStat(if-then-else (h ==1)(:=1)(l:=2)

{l: Low, h : High}

({l : Low, h : High}, Low), Low) -
labStat(l := 0)(labStat(l :=1)({l: Low,h : High}u
71 (labExpr(h == 1)),
m2(labExpr(h == 1)) U lenv) U
labStat(l := 2)({I: Low, h : High}U -
71 (labExpr(h == 1)),
m2(labExpr(h == 1)) U lenv), Low)
labStat(l := 0)(labStat(l:=1)({l: Low,h : High}U
{l : Low, h : High}, High U lenv) U
labStat(l := 2)({I: Low, h : High}U -
{l : Low, h : High}, High LI lenv), Low)
labStat(l := 0)(labStat(l := 1)({l : Low, h : High}, High) U
labStat(l := 2)({l : Low, h : High}, High), Low) _»
labStat(! := 0)({l : High, h : High} U {l : High, h : High}, Low) —»
labStat(! := 0)({! : High, h : High}, Low) —

where 71 and w2 are first and second projection.

Figure 1: Application of static algorithm to Example 3

created under a high context are indistinguishable from the
outside for an attacker.

An indistinguishablity relation for objects and heaps can
fix this. Following [4] we then have to define indistinguish-
ablity relative to a partial bijection on reference locations.

Exceptions

In languages like Java, programs do not only terminate nor-
mally or hang, they can also throw exceptions. Taking this
into account complicates our model considerably. In case
of exceptional termination, temporary breaches of confiden-
tiality cannot occur, since each exception propagates un-
til its catch clause, without restoring confidentiality along
the way. Since every statement or expression can possibly
throw an exception, and we do not want to exclude tem-
porary breaches of confidentiality completely, we have to
calculate two labeling functions, one for normal termination
and one for exceptional termination. Moreover, if an excep-
tion may be thrown by a certain statement, the statements
after this one should have as environment level the level of
the condition under which the exception is thrown, since
their execution depends on this condition®.

Method calls

Methods calls can easily be added to our language. The
main idea is to just propagate the labeling function lab and
the environment level lenv. So if at a certain point inside a
program a method is called we simply compute the labeling
function that results from this method call by analyzing the
method starting with the labeling function and environment
level at the point the method is called. After analysis of the
method call the new labeling function and environment level

3The situation becomes even more complicated if we take
the different internal termination modes into account. In
Java, statements can terminate abnormally via an exception,
a break, a continue or a return.

are used for the remainder of the analysis of the original
program.

Assertions

Related to the problem of multiple termination modes is the
following example:

Example 6
MyObject o := new MyObject(1l); low := o.f

Here o is some high object with field £ that has value 1.
If we do abstract interpretation, and consider the second
statement separately, we do not know if the object is a
null reference or not. Therefore, the statement can throw
a NullPointerException. This means that even if we in-
clude exceptional termination in our approach, we will only
be able to confirm confidentiality if this exception is caught
in a surrounding try-catch block. Otherwise, we will not be
able to verify that the termination mode does not depend
on high variables.

A possible solution here is the use of assertions. Looking
back at Example 6, if we know that object o is never null at
the start of the second statement, we only have to consider
normal termination. The assertion then needs to be proved
separately using a tool like ESC/JAVA2 [9].

Completeness

The algorithm we describe is not complete in the sense that
some programs which are confidential are identified as (pos-
sibly) leaking information (see Section 3). An example of a
program fragment that is considered to be insecure by our
approach is given below:

Example 7
low := high; low := low - high;

This code fragment does not leak any information from
the high variable high to the low variable low, because after

complete evaluation the variable low will always have value
zero. However, our algorithm will assign the security level
High to the variable low: the assignment low := high will
assign security level High to low and the next assignment
low := low - high will again assign security level High to
low, because the labeling function for minus involves calcu-
lating the maximum of the security levels of low and high
is High (in fact, both variables are high here). The problem
with this example is that we need more information on the
semantic level, which we do not have in our abstract se-
mantics. Other automatic approaches, such as those based
on type-checking will also identify this example as possibly
leaking information.

Assertions can also be useful when dealing with these situ-
ations were we need more semantic information. In example
7 we can add the assertion that variable low will always have
value zero at the end of this code fragment. If this asser-
tion is true, then we can treat variable low from this point
onwards again as a variable with security level Low.

We are now looking at possibilities to integrate our model
into the static analysis tool ESC/JAVA2. We suspect that
this is in principle straightforward. However, in practice it
may require much additional work.

7. RELATED WORK

In this section we focus on related work on abstract in-
terpretation and theorem proving applied to confidentiality.
Confidentiality has been studied since the seventies, going
back to the work of the Dennings [12, 14, 13] which influ-
enced almost all current work on confidentiality (including
ours). Interested readers are referred to Sabelfeld and My-
ers [24] for a recent overview of issues concerning confiden-
tiality.

Applying abstract interpretation [10] to confidentiality is
not new. Cousot [11] and Giacobazzi and Mastroeni [15]
have formalized abstract interpretation based formalisms for
confidentiality. Avvenuti et al [3] formalized an algorithm
for assuring confidentiality for Java byte code based on ab-
stract interpretation. The main difference with our work is
that the secrecy labels associated with variables are static
(i.e., do not change during the abstract evaluation). This
means that Avvenuti et al cannot check temporary breaches
of confidentiality. Zanotti [27] uses abstract interpretation in
a way related to ours, however instead of applying abstract
label transition functions and then afterwards checking if
decreasingness holds, Zanotti constructs at each assignment
a set of allowed assignments (i.e., those that do not violate
confidentiality) and checks if the assigned variable is in this
set.

As far as we know, only two other papers exists in the lit-
erature which apply theorem proving to confidentiality. Dar-
vas, Hahnle and Sands [1] use (interactive) theorem proving
applied to confidentiality. The KeY-tool [2] is used to for-
malize Joshi and Leino’s [17] work on a semantic approach
for confidentiality. It involves finding a ‘functional formula-
tion’ of confidentiality proving it using dynamic logic. Such
a functional formulation is a predicate that expresses how
High values in the input of a program are related to Low out-
puts of the same program. Almost all the (trivial) examples
they prove require an instantiation by an experienced user of
their tool where as our algorithm can prove these examples
automatically. However, since the KeY-tool has a semantics
for the sequential Java-subset JavaCard [7], they can handle

more language features. Their paper does not describe how
to deal with exceptions.

Strecker [25] formalizes a type-systems for confidential-
ity in Isabelle [21] for the language MicroJava. MicroJava
is a simplified version of JavaCard, e.g., there is only one
exception-type. He proves (in Isabelle) that the type-system
is sound.

8. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for automatically prov-
ing confidentiality. It is completely, formalized and proved
to be sound within the higher order theorem prover PVS.
Based on this model we have given a static algorithm for
checking confidentiality, which we have illustrated via rewrit-
ing in PVS. We argue that this algorithm can easily be
integrated in existing (rewriting) tools for static program
verification, due to its dynamic labeling.

For future work we want to explore this possibility further
and extend our work to full sequential Java.

9. REFERENCES

[1] Addm Darvas, Reiner Hiihnle, and Dave Sands. A
theorem proving approach to analysis of secure
information flow. In Roberto Gorrieri, editor,
Workshop on Issues in the Theory of Security, WITS.
IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS,
2003.

[2] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert,
Richard Bubel, Martin Giese, Reiner Hahnle, Wolfram
Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY tool.
Software and System Modeling, 2003. To appear.

[3] Marco Avvenuti, Cinzia Bernardeschi, and Nicoletta
De Francesco. Java bytecode verification for secure
information flow. ACM SIGPLAN Notices,
38(12):20-27, 2003.

[4] Anindya Banerjee and David A. Naumann.
Stack-Based Access Control for Secure Information
Flow. Journal of Functional Programming, 200x.
Special Issue on Language-Based Security, To appear.

[5] Giles Barthe, Amitabh Basu, and Tamara Rezk.
Security Types Preserving Compilation. In VMCAI’0
Proceedings, LNCS. Springer, Berlin, 2004.

[6] K. J. Biba. Integrity considerations for secure
computer systems. Technical Report MTR-3153,
MITRE Corp., 1977.

[7] Zhiqun Chen. Java Card technology for smart cards:
architecture and programmer’s guide. Addison-Wesley,
June 2000.

[8] David R. Cok and Joseph R. Kiniry. ESC/Java2:
Uniting ESC/Java and JML. Technical Report
NIII-R0413, Nijmegen Institute for Computer and
Information Sciences, 2004. available at http://www.
cs.ru.nl/research/reports/info/NIII-R0413.html.

[9] David R. Cok and Joseph R. Kiniry. ESC/Java2:
Uniting ESC/Java and JML. In Proceedings of
CASSIS: Construction and Analysis of Safe, Secure
and Interoperable Smart devices, LNCS.
Springer-Verlag, to appear. See the associated
technical rapport [8].

[10] P. Cousot. Abstract interpretation. Symposium on
Models of Programming Languages and Computation,
ACM Computing Surveys, 28(2):324-328, June 1996.

[11] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[12] Dorothy E. Denning. A Lattice Model of Secure
Information Flow. Communications of the ACM,
19(5), May 1976.

[13] Dorothy E. Denning. Cryptography and Data Security.
Addison-Wesley, 1982.

[14] Dorothy E. Denning and Peter J. Denning.
Certification of programs for secure information flow.
Communications of the ACM, 20(7):504-513, July
1977.

[15] Roberto Giacobazzi and Isabella Mastroeni. Abstract
Non-Interference: Parameterizing Non-Interference by
Abstract Interpretation. In POPLO04 proceedings, 2004.

[16] J. Goguen and J. Meseguer. Security policies and
security models. In IEEE Symp. on Security and
Privacy, pages 11-20. IEEE Comp. Soc. Press, 1982.

[17] R. Joshi and K.R.M Leino. A semantic approach to
secure information flow. Science of Comput. Progr.,
37(1-3):113-138, 2000.

[18] Butler W. Lampson. A note on the Confinement
Problem. Communications of the ACM,
16(10):613-615, 1973.

[19] Hanne Riis Nielson and Flemming Nielson. Semantics
with Applications. Wiley Professional Computing,
1992.

[20] S. Owre, J.M. Rushby, N. Shankar, and F. von Henke.
Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Trans. on
Softw. Eng., 21(2):107-125, 1995.

[21] L.C. Paulson. Isabelle: A Generic Theorem Prover.
Number 828 in LNCS. Springer, Berlin, 1994.

[22] Franois Pottier and Vincent Simonet. Information flow
inference for ML. ACM Transactions on Programming
Languages and Systems, 25(1):117-158, January 2003.

[23] The PVS website, http://pvs.csl.sri.com/.

[24] Andrei Sabelfeld and Andrew C. Myers.
Language-Based Information-Flow Security. IEEE
Journal on selected areas in communications, 21(1),
2003.

[25] Martin Strecker. Formal analysis of an information

flow type system for MicroJava (extended version).

Technical report, Technische Universitat Miinchen,

July 2003.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine.

A sound type system for secure flow analysis. Journal

of computer security, 4(3):167-187, 1996.

[27] M. Zanotti. Security Typings by Abstract
Interpretation. In SAS, volume 2477 of LNCS, pages
360-375. Springer-Verlag, September 2002.

26

