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Timing channels constitute one form of covert channels through which programs
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without objects nor exceptions.
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1 Introduction

Modern programming languages for mobile code often rely on type systems to
enforce basic safety policies; on the other hand, basic security properties such
as confidentiality, integrity and availability are notoriously hard to enforce,
and only a few languages attempt to offer static enforcement mechanisms for
these properties. Thus it is important to develop tools that help enforcing
properties that relate to the aforementioned security properties.

This paper is concerned with non-interference [9], a high-level property that
guarantees confidentiality of programs by distinguishing between low (public)
and high (secret) program variables, and by requiring that all high security
level variables are completely independent of low variables. In other words, a
program is non-interfering if it is impossible to learn the value of high level
variables by observing low level variables.

Many methods proposed in the literature (see Sabelfeld and Myers [17]
for an overview) deal with termination insensitive non-interference. This is a
weak form of non-interference that only considers normal termination modes.
A program is deemed termination insensitive non-interfering if all high vari-
ables are independent of low variables, provided the program terminates nor-
mally. In other words, the non-interference property does not consider those
cases where a program hangs or terminates abruptly (e.g. via an exception).

A somewhat stronger version of non-interference does take the termina-
tion behavior of programs into account resulting in the notion of termination
sensitive non-interference. Thus in this case non-interference ensures that no
matter how a program terminates (or hangs) high variables are independent
of low ones.

Still stronger versions of non-interference also consider covert channels [13].
If a program leaks secret information via channels that are not intended for
communication we speak of information leakage via covert channels. Both
resource consumption (memory/CPU) and timing behavior of a program can
be used as a covert channel.

This paper deals with termination-sensitive non-interference and one covert
channel: timing behavior. This form of non-interference is called time-sensi-
tive termination-sensitive non-interference, and ensures termination-sensitive
non-interference and the absence of timing channels. Such timing channels can
be used to leak sensitive information: for example, Kocher [11] showed that
certain implementations of encryption algorithms can leak information about
the used key via timing behavior. Unfortunately, timing leaks are hard to avoid
by design, in particular because even the slightest difference in execution time
can be made observable by putting it inside a loop, thereby potentially leaking
secret information. They are also very hard to detect, and static enforcement
mechanisms for non-interference do not consider timing channels. In fact, the
main trend in avoiding timing channels is to use a program transformation
that transforms termination-insensitive non-interfering programs into time-
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sensitive termination-sensitive non-interfering programs. However, existing
results are limited to programs that only exploit a limited set of features.

The main result of the paper is a program transformation method that
eliminates timing leaks in sequential object oriented languages with excep-
tions. Our method for enforcing non-interference is based on (nested) trans-
action mechanisms [15]. The basic idea is to transform conditionals that de-
pend on high expressions, i.e. expressions that depend on high variables, into
conditionals in which each branch performs two transactions (one transaction
for each branch in the original conditional statement), one of which is commit-
ted, namely the one that would have been executed in the original statement.
Formally, the idea is to transform a branching statement of the form

if e then c1 else c2

into the statement

if e then beginT; c′2 abortT; beginT; c′1; commitT

else beginT; c′1; abortT; beginT; c′2 ; commitT

where beginT starts a new transaction and abortT and commitT respectively
aborts and commits a transaction, and c′1 and c′2 are respectively the state-
ments c1 and c2 transformed in the same manner.

The proposed transformation offers several advantages. First of all, the
transformation is correct in the sense that termination-insensitive non-interfe-
ring programs are transformed into time-sensitive termination-sensitive non-
interfering programs.

Second of all, the method is applicable to sequential object-oriented lan-
guages with exceptions and method calls, and therefore handles a fragment
of the language that is significantly more expressive than the languages con-
sidered in previous works, see below. In particular, this is the first work
considering dynamic object creation. Furthermore, the transformation is ap-
plicable to structured languages and intermediate or low level languages (but
for the sake of clarity, we choose to present the transformation at source code
level).

Third of all, the transformation is independent of the technique used to
enforce termination-insensitive non-interference. More specifically, the trans-
formation does not rely on the fact that programs are verified with an in-
formation flow type system as in Volpano and Smith’s work [18], or using a
program logic as in Barthe, D’Argenio and Rezk’s approach [6].

On a more negative side our translation raises several questions, which are
discussed in Section 5.
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Related work

Agat [1,3] suggests an approach to remove timing leaks based on program
transformation. In essence his approach involves dummy assignments and
branching instructions which take exactly the same time as normal assign-
ments and branching instructions. By padding a program with these dummy
instructions he can prove that the resulting program will always execute in a
time which only depends on non-secret variables, thereby removing all tim-
ing leaks. An additional type system then enforces that well typed padded
programs are time-sensitive termination-sensitive non-interfering, under the
restriction that all guards of while commands are typed minimal. The pro-
gramming language Agat considers is an imperative language with arrays, but
without objects or exceptions. In [2] Agat also implemented his approach,
using (part of) Java byte code as his programming language.

Recently, Hedin and Sands [10] have extended Agat’s work towards an
object oriented language. However, for now, exceptions are not supported.

Köpf and Mantel [12] exposed ideas of how to improve type systems to
eliminate timing leaks by incorporating unification. They look at a simple
imperative language without objects.

Contents

The remainder of this paper is organized as follows: Section 2 introduces a
simple imperative programming, Section 3 shows how to transform programs
in such a way that timing-leaks are prevented. Section 4 describes how to
extend this translation to an object oriented language with exceptions. Sec-
tion 5 gives some general observations about our approach and ideas how to
implement the translation for (sequential) Java. We end with conclusions and
future work.

2 Language

We first consider a sequential imperative language whose set Expr of expres-
sions and Comm of commands are given by the syntaxes in Figure 1. In this
language, a program P is a declaration of the form P (~x) := c. The operational
semantics of programs is given by a small step operational semantics that cap-
tures one step execution of the program, and relate states, execution time and
results. In our setting, results are simply values, and we let Res denote the
set of results. The set State of states is defined as the set of pairs of the form
〈c, ρ〉 where c is in Comm, ρ is a mapping from local variables from a set of
variables X to values. We distinguish a special variable res to store results of
execution of programs, as is defined below. Finally, the execution time of the
program is modeled using a commutative monoid (T, +, 0).

Formally, the operational semantics is defined through a relation s ;t r,
where s ∈ State, r ∈ Res ∪ State and t ∈ T , with intuitive meaning that s
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e ::= x | n | e1 op e2 |

c ::= x := e | c1; c2 | while e do c | if e then c1 else c2 | return e | ε
where op is either a primitive operation +,×, a comparison operation <,≤, =,

or the (unconditional) boolean connectives | and & and ε is the empty program
(skip).

Fig. 1. The language

evaluates to r in time t. The closure ;∗
t is then defined inductively by the

clauses:

• if s ;t s′ then s ;∗
t s′;

• if s ;∗
t s′ and s′ ;∗

t′ s′′ then s ;∗
t+t′ s′′.

Finally, we define an evaluation relation ⇓ between states, results and execu-
tion time and set 〈c, ρ〉 ⇓t v iff 〈c, ρ〉 ;∗

t 〈ε, ρ′〉 with ρ′(res) = v and v ∈ Res.
In the sequel, we often write P, ρ ⇓t r instead of 〈c, ρ〉 ⇓t r where P (~x) = c.
Further, we simply write P, ρ ⇓t when the result of the evaluation is irrelevant,
i.e. as a shorthand for ∃r. P, ρ ⇓t r. Finally, for every function f ∈ A → B,
x ∈ A and v ∈ B, we let f ⊕{x 7→ y} denote the unique function f ′ such that
f ′(y) = f(y) if y 6= x and f ′(x) = v.

The rules of the operational semantics are given in Figure 2. The rules
are standard, except for execution time for which there are several possible
models. In our model, each command has its own execution time; for example,
the execution time of x := e is equal to the sum of the execution time of e and
of some constant t:=. More refined models allow the execution time of each
instruction to be parametrized by the state, or even by execution history; for
example, in the above example t:= would become a function. It is possible to
extend our results to such execution models, by imposing suitable equational
constraints on these functions.

3 Transforming out timing leaks

Our method for transforming out timing leaks is based on (nested) transaction
mechanisms [15]. Transactions have the ACID property (Atomicity, Coher-
ence, Isolation and Durability) which makes them ideal for use in an approach
for enforcing (stronger forms of) non-interference.

3.1 Transactions

Transactions allow a programmer to view code blocks as atomic and perform
all updates inside such a transaction block as conditional. Only after an
explicit commit command an update is really carried out. If the programmer
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〈x, ρ〉 ;tR1
〈ρ(x), ρ〉

v op v′ = v′′

〈v op v′, ρ〉 ;tOP 〈v′′, ρ〉

〈e1, ρ〉 ;t 〈e′
1, ρ〉

〈e1 op e2, ρ〉 ;t 〈e′
1 op e2, ρ〉

〈e2, ρ〉 ;t 〈e′
2, ρ〉

〈v op e2, ρ〉 ;t 〈v op e′
2, ρ〉

〈x := v, ρ〉 ;t:= 〈ε, ρ⊕{x 7→ v}〉

〈e, ρ〉 ;t 〈e′, ρ〉
〈x := e, ρ〉 ;t 〈x := e′, ρ〉

〈c1, ρ〉 ;t 〈c′
1, ρ′〉

〈c1; c2, ρ〉 ;t 〈c′
1; c2, ρ′〉

〈ε; c2, ρ〉 ;tε 〈c2, ρ′〉

〈e, ρ〉 ;t 〈true, ρ〉
〈while e do c, ρ〉 ;t 〈c; while e do c, ρ〉

〈e, ρ〉 ;t 〈false, ρ〉
〈while e do c, ρ〉 ;t 〈ε, ρ〉

〈e, ρ〉 ;t 〈true, ρ〉
〈if e then c1 else c2, ρ〉 ;t 〈c1, ρ〉

〈e, ρ〉 ;t 〈false, ρ〉
〈if e then c1 else c2, ρ〉 ;t 〈c2, ρ〉

〈e, ρ〉 ;t 〈e′, ρ〉
〈return e, ρ〉 ;t 〈return e′, ρ〉

〈return v, ρ〉 ;tR 〈ε, ρ⊕{res 7→ v}〉

Fig. 2. Small Step Operational Semantics for the core language

desires so it is also possible to perform a roll-back to the state before the
beginning of the transaction block via an explicit abort command.

The operational semantics of transactions is given in Figure 3. Note that
transactions can be nested arbitrarily deep.

3.2 Problem statement and hypotheses

Since we are interested in ensuring non-interference, we assume that all ex-
pressions, including program variables, are classified with security levels high
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〈c, ρ〉 ⇓t′ 〈ε, ρ′〉
〈beginT; c; abortT, ρ〉 ;tba+t′ 〈ε, ρ〉

〈c, ρ〉 ⇓t′ 〈ε, ρ′〉
〈beginT; c; commitT, ρ〉 ;tbc+t′ 〈ε, ρ′〉

Fig. 3. Operational Semantics for transaction mechanisms

(secret) or low (public). Formally, we assume given a function sl that maps
expressions to security levels. Furthermore, we assume that memories that
coincide on their low parts yield equal results for the evaluation of low expres-
sions. Formally, we introduce an equality ' on memories, and set ρ ' ρ′ to
hold iff ρ(x) = ρ(x′) for all variables x such that sl(x) = L. Then, we assume
that for all expressions e and memories ρ and ρ′ such that ρ ' ρ′, we have

< e, ρ >⇓t v ∧ < e, ρ′ >⇓t′ v′ ⇒ v = v′

Timing leaks in a program might occur when the branches of a conditional
statement take different execution times. In our language, branches in execu-
tion are caused either by if-then-else or while commands. Due to our execution
model, timing leaks can only occur when the conditional statement makes its
test on a high expression. We only address the case of if-then-else statements
that branch over high expressions, and restrict ourselves to low-recursive pro-
grams, where a program P is low-recursive iff it does not contain a statement
of the form while e do c with sl(e) = H. While the restriction to low-recursive
programs is rather severe, it is already present in the works of Agat [1,3] and
Volpano and Smith [18].

3.3 The transformation

In order to avoid timing leaks caused by if-then-else statements, we use trans-
actions to execute both branches of the statement. Thanks to an appropriate
use of committing and aborting transactions, the transformation is semantics
preserving up to termination.

The transformation of if-then-else statements is given in Figure 4, and is
defined relative to a mapping sl that gives the security level of an expression
or statement. The ‘big’ if-then-else’s in the translation –IF, THEN and ELSE–
belongs to the translation and not to the programming language, and is intro-
duced so that we only use transactions for if-then-else blocks with a high
conditional. For all other cases, the transformation is defined by the obvious
recursive clause.

The transformation is semantics preserving up to termination of the trans-
formed program. Indeed, the transformation may introduce non-termination,
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T (if e then c1 else c2) =
IF sl(e) = L THEN if e then T (c1) else T (c2)
ELSE if e then

beginT;T (c2);abortT;beginT;T (c1);commitT; else
beginT;T (c1);abortT;beginT;T (c2);commitT;

Fig. 4. Translation T for removing timing leaks

as illustrated by the program

if xH > 0 then (if xH < 0 then loop else ε) else ε

Nevertheless we have:

Lemma 3.1 For every program P , memory ρ, results r, r′ ∈ Res, and times
t, t′ ∈ T such that P, ρ ⇓t r and T (P ), ρ ⇓t′ r′, we have r = r′.

Proof. We prove that for every command c, memory ρ, results r, r′ ∈ Res,
and times t, t′ ∈ T such that c, ρ ⇓t r and T (c), ρ ⇓t′ r′, we have r = r′.

The proof proceeds by induction on the structure of c. It is straightforward
and omitted.

2

3.4 Application to non-interference

This section shows that our transformation maps low-recursive non-interfering
programs into time-sensitive termination-sensitive non-interfering programs.

Before establishing these results, we review the definitions of non-interfe-
rence; in the sequel ⇑ denotes non-termination.

Definition 3.2 [Non-interference]

(i) A program P is termination-insensitive non-interfering, written TINI(P ),
if for every ρ, ρ′ ∈ X → V , and v, v′ ∈ V , we have 〈P, ρ〉 ⇓t v and ρ ' ρ′

imply 〈P, ρ′〉 ⇓t′ v′ and v = v′ or P, ρ′ ⇑.

(ii) A program P is termination-sensitive non-interfering, written TSNI(P ),
if for every ρ, ρ′ ∈ X → V , and v, v′ ∈ V , we have 〈P, ρ〉 ⇓t v and ρ ' ρ′

imply 〈P, ρ′〉 ⇓t′ v′, and v = v′.

(iii) A program P is time-sensitive termination-sensitive non-interfering, writ-
ten TSTSNI(P ), if for every ρ, ρ′ ∈ X → V , and and v, v′ ∈ V, we have
〈P, ρ〉 ⇓t v and ρ ' ρ′ imply 〈P, ρ′〉 ⇓t v′, and v = v′.

The difference between termination-insensitive and termination-sensitive
non-interference is that the former only compares execution traces that ter-
minate while the latter requires that the termination of the program is uni-
form in the high part of the memory. Note that TSTSNI(P ) implies TSNI(P )
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(time-sensitive termination-sensitive non-interference imposes moreover that
the execution time is uniform in the high part of the memory).

Since the transformation is semantic preserving up to termination, we
prove that our transformation preserves termination-insensitive non-interfe-
rence.

Corollary 3.3

For every low-recursive program P , TINI(P ) implies TINI(T (P )).

Proof. Straightforward by Lemma 3.1. 2

The transformation eliminates from programs timing leaks due to high
if-then-else statements, provided that the program is non-interfering and low-
recursive.

Theorem 3.4 For all low-recursive non-interfering programs P , and memo-
ries ρ and ρ′ such that ρ 'L ρ′, we have T (P ), ρ ⇓t iff T (P ), ρ′ ⇓t.

Proof. We prove that for all low-recursive commands c, and memories ρ and
ρ′ such that ρ 'L ρ′, we have 〈T (c), ρ〉 ;t 〈ε, ρ1〉 iff 〈T (c), ρ′〉 ⇓t 〈ε, ρ′1〉. The
proof proceeds by structural induction on commands.

Case c ≡ T (if e then c1 else c2)
• Suppose sl(e) = L then

c ≡ if e then T (c1) else T (c2)

and by IH we have that for some t, 〈T (c1), ρ〉 ;t 〈ε, ρ1〉 iff 〈T (c1), ρ
′〉 ;t

〈ε, ρ′1〉 and the same holds for c2. Since sl(e) = L and ρ 'L ρ′, by
operational semantics e evaluates to the same value in memory ρ and
ρ′ and we conclude.

• Suppose sl(e) 6= L then c is

if e then

beginT;T (c2);abortT;beginT;T (c1);commitT;

else

beginT;T (c1);abortT;beginT;T (c2);commitT;

We have to prove that

〈beginT;T (c2);abortT;beginT;T (c1);commitT;, ρ〉 ;t 〈ε, ρ1〉 iff

〈beginT;T (c1);abortT;beginT;T (c2);commitT;, ρ
′〉 ;t 〈ε, ρ1〉
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(⇒) Suppose that

〈beginT;T (c2);abortT;beginT;T (c1);commitT;, ρ〉 ;t 〈ε, ρ1〉

where 〈T (c2), ρ〉 ;t2 〈ε, ρ2〉 and 〈T (c1), ρ〉 ;t1 〈ε, ρ′2〉 and t = t1 +
t2 + tba + tbc. By IH 〈T (c2), ρ

′〉 ;t2 〈ε, ρ3〉 and 〈T (c1), ρ
′〉 ;t1 〈ε, ρ′3〉

hence we are done.
(⇐) Analogous to previous case.

Case c ≡ while e do c1 Because the program is low-recursive, we know that
sl(e) = L and since ρ 'L ρ′, by operational semantics e evaluates to the same
value in memory ρ and ρ′. If e evaluates to false, we are done. Otherwise, by
IH 〈T (c1), ρ〉 ;t1 〈ε, ρ1〉 iff 〈T (c1), ρ

′〉 ;t1 〈ε, ρ′1〉 holds. Since the program
is non-interfering, we have that ρ1 'L ρ′1 and we can conclude.

Assignment, return and skip commands are trivial. The case for c1; c2 is
straightforward by IH.

2

As a corollary of this result we prove that our transformation also trans-
forms termination-insensitive non-interfering programs into (time-sensitive)
termination-sensitive non-interfering programs.

Corollary 3.5 For all low-recursive non-interfering programs P such that
TINI(P ), we have TSTSNI(T (P )).

Proof. By Corollary 3.3, TINI(T (P )). By Theorem 3.4, for all low-recursive
non-interfering programs P , and memories ρ and ρ′ such that ρ 'L ρ′, we have
T (P ), ρ ⇓t iff T (P ), ρ′ ⇓t. 2

3.5 Enforcing termination-sensitive non-interference

Our transformation yields time-sensitive termination-sensitive non-interfering
programs provided the input programs are termination-insensitive non-inter-
fering programs and low-recursive. In this section, we examine how the latter
properties may be enforced on programs.

Volpano and Smith [18] provide a sound information flow type system for
a simple imperative language. They use minimal typing for loop-conditionals
and expressions which can (possibly) throw exceptions to enforce the termi-
nation sensitive form of non-interference, i.e. if the security types of these
conditionals and expressions are minimal, in terms of the security level, then
the termination behavior will only depend on low variables, thereby ensuring
that termination behavior of a program can not leak information. Volpano
and Smith prove an additional lemma which states that if all conditionals and
expressions that can throw exceptions are typed minimally then the program
will be time-sensitive termination-sensitive non-interfering.

The main disadvantage of this approach is that information flow type sys-
tems are very restrictive, and reject many secure programs, even for sim-
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ple programming languages. In order to overcome this limitation, Barthe,
D’Argenio, and Rezk [6] have investigated logical formulations of non-inter-
ference that allow a more precise analysis of programs. Such formulations
are often sound and complete, and also amenable to interact with automated
verification techniques, such as theorem-proving or model-checking.

4 Adding objects, methods and exceptions

4.1 Language

We extend our simple imperative language with objects, methods (without
dynamic dispatch) and an exception mechanism as in Java, and we call OO the
resulting language. The sets Expr of expressions and Comm of commands are
given by the syntaxes in Figure 5.

An OO program P comes equipped with a set C of class names, including
a class Throwable of exceptions, a set F of field names, and a set of method
declarations of the form m(~x) := c, where m is a method name, ~x is a vector
of variables (method formal parameters), and c is a command in Comm. For
every program in OO, we distinguish a main method namely main.

e ::= x | n | e1 op e2 | e.f | new C | e.m(~e) | (C)e

c ::= x := e | c1; c2 | while e do c | if e then c1 else c2 |

e.f := e | return e | ε | try c1 catch(Exception x) c2 | Throw

where op is either a primitive operation +,×, a comparison operation <,≤, =,

or the (unconditional) boolean connectives | and & and ε is the empty program
(skip).

Fig. 5. The language OO

The operational semantics of the language is given in Appendix A; due
to the presence of exceptions, performing one-step execution of a command
may either lead to a normal state, or to an exceptional state. For the sake of
simplicity, we assume that the only commands that may raise exceptions in
our language are x.f := e, x := e.f (where e cannot throw exceptions), and
an explicit Throw statement.

The operational semantics is used to define an evaluation relation that
relates programs, memories, results, and execution times.

4.2 Problem statement

In our extended language, timing leaks may occur due to explicit or implicitly
thrown exceptions.
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We require that all exceptions that are thrown under a high security level
are surrounded by a try-catch block. In order to write a correct transforma-
tion, we also need to assume that high exceptions (i.e. exceptions thrown by
a command containing e.f where e.f is a high expression) are handled in the
same method where the exceptions are thrown, i.e. high exceptions cannot
be propagated. The same applies to Throw commands inside influence of high
conditionals.

4.3 The transformation

Figure 6 shows how we extend the translation T from Figure 4 to allow for
objects and exceptions. The transformation T uses a tail recursive function
T1, showed in Figure 7. Intuitively T1 transforms every high command that
might throw an exception into a set of commands without timing leaks.

In the transformation T1(c0, c1, c2, x), argument c0 is a partial result of
sequence of commands that either do not depend of high variables or that
depend of high variables but that have been transformed in a sequence of
timing-leaks free commands; its second argument c1 represents commands in
the original sequence of commands of a try part of a try-catch command
that has to be transformed into a sequence of timing-leaks free commands;
the third argument c2 corresponds to the original command in the catch part
of a try-catch command, and x is its variable. For example, in the case where
the first command in c2 is x′.f := e, the ‘dummy’ object in its transformation,
that is created if variable x′ holds a null reference, is used to perform the
assignment x′.f := e, which is then aborted. Symmetrically we also create a
dummy object within a transaction-block which is then aborted directly, so
that the assignment can be performed on the initial (non-null) object. We use
the static type of the object to create a corresponding dummy object. In this
way we ensure that fields of dummy objects are the same fields of the original
one (either directly or via inheritance).

Figure 8 presents an example of how the command try {x := 1; y.f :=
v; z.f := v′} catch(Exception x′) {c3} is tranformed, assuming that x and z.f
are low expressions and that y.f is a high expression.

One can extend the results of the previous section and show that the trans-
formation removes timing leaks from non-interfering programs. The proofs are
similar to those of the previous section, but they are more involved, because of
the increased complexity of the semantics and definitions of non-interference.

4.4 Enforcing termination-sensitive non-interference

In order to yield time-sensitive termination-sensitive non-interfering programs,
the transformation must take as inputs non-interfering low-recursive and low-
exceptional programs. Establishing termination-insensitive non-interference
can be done with the type system suggested by Banerjee and Naumann [4,5].
Their language is almost identical to the exception-free fragment of OO, and
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T (try c1 catch(Exception x) c2) = T1(ε, c1, c2, x)

T (if e then c1 else c2) =

IF sl(e) = L THEN if e then T (c1) else T (c2)

ELSE if e then beginT;T (c2);abortT;

beginT;T (c1);commitT;

else beginT;T (c1);abortT;

beginT;T (c2);commitT;

T (while e do c) = while e do T (c)

T (c1; c2) = T (c1); T (c2)

Transformation T for other commands is defined as the identity.

Fig. 6. Transformation T for OOex

their type system can easily be adopted to such a fragment. In an ongoing
collaboration with D. Naumann, we are studying an information flow type
system for a fragment of Java with exceptions. Such a type system could be
used to check that programs that are submitted to the transformation have
the expected properties, so that the transformed programs do not have timing
leaks.

5 Observations and Practical concerns

This section describes some general observations about our approach, as well
as some problems and possible solutions when it is applied in practice. We
describe these practical concerns in the context of the (sequential part of
the) programming language Java. However we want to stress that the code
translation can be applied to any object oriented language as long as (nested)
transaction mechanisms are supported or can be implemented.

5.1 Time-outs

We do not want to use transactions which can time-out, i.e. which have a
maximum bound on the time they can take, then time-out and consequently
perform an abort. Either one of two things can happen in such a scenario
which are both undesirable:

(i) Information can be leaked,

13
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T1 (c0, ε, c3, x) = try c0 catch(Exception x) c3

T1 (c0, x′ := e.f ; c2, c3, x) =

IF sl(x′) = L THEN T1(c0; x′ := e.f, c2, c3, x) ELSE T1(c0; c′
1, c2, c3, x) where c′

1 =

if e == null then

beginT; c3; commitT; beginT; x′ := e; x′ := (new C).f ; abortT;

else beginT; c3; abortT; beginT; x′ := new C; x′ := e.f ; commitT;

T1 (c0, (while e do c′
1); c2, c3, x) = T1(c0; while e do T1(ε, c′

1, c3, x), c2, c3, x)

T1 (c0, (if e then c′
1 else c′

2); c2, c3, x) =

IF sl(e) = L THEN T1(c0; if e then T1(ε, c′
1, c3, x) else T1(ε, c′

2, c3, x), c2, c3, x)

ELSE T1(c0; if e then

beginT;T1(ε, c′
2, c3, x);abortT;beginT;T1(ε, c′

1, c3, x);commitT; else

beginT;T1(ε, c′
1, c3, x);abortT;beginT;T1(ε, c′

2, c3, x);commitT; , c2, c3, x)

T1 (c0, x′.f := e; c2, , c3, x) =

IF sl(x′.f) = L THEN T1(ε, x′.f := e, c3, x) ELSE T1(c0; c′
1, c2, c3, x) where c′

1 =

if e == null then

beginT; c3; commitT; beginT; beginT; x′ := new C; commitT; x′.f := e; abortT;

else beginT; beginT; x′ := new C; abortT; c3; abortT; beginT; x′.f := e; commitT

T1 (c0, e.f := e′; c2, , c3, x) = T1(c0; e.f := e′, c2, , c3, x) where e is not a variable

T1 (c0, x′ := e; c2, , c3, x) = T1(c0; x′ := e, c2, , c3, x) where e is not e′.f

T1 (c0, return e; c2, c3, x) = T1(c0; return e, c2, c3, x)

T1 (c0, ε; c2, c3, x) = T1(c0, c2, c3, x)

T1 (c0, throw; c2, c3, x) = T1(c0; throw, ε, c3, x)

T1 (c0, try c′
1 catch(Exception x′) c′

2; c2, c3, x) = T1(c0; T1(ε, c′
1, c′

2, x′), c2, c3, x)

Fig. 7. Transformation T1 for OOex

(ii) The semantics of our language is no longer preserved.

Consider the translation T from Figure 4 again. Suppose that each trans-
action-block has a fixed time-out tto. Then if the command c1 hangs and the
command c2 terminates normally in a time tc2 < tto the following situation
occurs:

• if c evaluates to true both transactions will be aborted, the first (c2)
explicitly via a call to abortT the second (c1) implicitly via a time-out
(because c1 does not terminate),

• however if c evaluates to false then the first transaction-block will again
time-out and thus abort, but the second block will be executed.

So in this scenario information can be leaked (about the value of c).

We can prevent this undesirable behavior by putting the complete if-then
-else in a transaction block, i.e. if body is the (translated) if-then-else from
Figure 4, we would put this again inside a transaction block, thereby obtaining
program fragment beginT; body; commitT;. Information is now no longer
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T (try{x := 1; y.f := v; z.f := v′}catch(Exception x′){c3}) =
T1(ε, x := 1; y.f := v; z.f := v′, c3, x

′) =
T1(x := 1, y.f := v; z.f := v′, c3, x

′) =
try

x := 1;
if(y == null){

beginT; T (c3); commitT; }
beginT;

beginT; y := new C; commitT;
y.f := v;

abortT;
else{

beginT;
beginT; y := new C; abortT;
T (c3);

abortT;
beginT; y.f := v; commitT; }

z.f := v′;
catch(Exception x′)

c3

Fig. 8. Example

leaked because if one of the inner transaction blocks time-outs the outer block
will obviously also time-out and thus the whole if-then-else will no longer be
executed. However this will have the undesirable side-effect that the semantics
of our language is no longer preserved.

5.2 Termination

Our transformation may turn a terminating program in a program that hangs,
which is clearly undesirable. Non-termination arises in the transformation
when we consider program fragments like if e then c1 else c2 (a similar
argument applies to commands that may throw exceptions). If command c1

terminates normally and c2 hangs then the translated program will always
hang. This behavior results from the fact that the termination mode of a
command in a way overrules the transaction mechanism. In order to minimize
the cases of non-termination and the overhead caused by our transformation,
the translation of if-then-else blocks with a low conditional is given by
the obvious recursive clause. Finer approaches that do not introduce non-
termination are left for future work.
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5.3 Preventing code explosion

Automatic program transformations may lead to a substantial increase in the
size of code, or even to code explosion. Our approach is no exception to this,
since the size of the transformed code is exponential in the nested ifs. In order
to avoid code explosion, one can implement the transaction mechanism at the
byte-code level using subroutines. The basic idea there is that conditional
branching statements, which are usually compiled as,

1 ifeq i

.. c2

i− 1 goto j

i c1

..

j return

are compiled, if they branch over a high expression, into

1 ifeq 9 13 jsr k2

2 beginT 14 abortT

3 jsr k1 15 goto 18

4 abortT 16 return

5 beginT k1 store x

6 jsr k2 c′1

7 commitT ...

8 goto 18 ret x

9 beginT k2 store x

10 jsr k1 c′2

11 commitT ...

12 beginT ret x

where the instruction jsr k calls the subroutine starting at k.

Another method that can be used to minimize code explosion is the use
of assertions. The method is complementary, in that it aims at reducing the
branching at instructions that may raise an exception, but in fact do not.
Consider the following code fragment:

// assert o1!=null
o1.f = c;

The assertion states that the variable o1 is not a non-null reference. So we do
not have to encapsulate this assignment in a try-catch block and proceed via
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the translation as shown in Figure 6. That is, provided the assertion is true,
which has to be checked with a separate tool such as ESC/Java2 [8]. Note
that assertions can also be used to improve the precision of information flow
type systems.

5.4 Timing model

Our operational semantics adopts a very simple model of time. In particular,
the execution time of arithmetic expressions is constant and independent of
the values assigned to variables. Furthermore, our model of execution time
does not reflect the fact that the execution time for a given state may vary
depending on the execution history of the program. Thus mechanisms such
as caching interfere with our approach and could allow timing leak.

One drastic solution is to turn off all caching features, such as data-cache,
instruction-cache and virtual memory. A better solution would be to impose
appropriate interactions between caching and transaction mechanisms. This
is left for future work.

5.5 Optimizing and JIT-compiling

Although we prove that the transformation at the source code level removes
all timing leaks we need to be careful when compiling and running the trans-
formed program. In the case of Java we have to ensure that no optimizations
are performed when compiling to byte-code. A ‘smart’ compiler probably
removes code fragments like beginT; . . . ; abortT since semantically these
are equivalent to a skip statement. In our approach it is crucial that these
code-blocks are also present in the compiled byte-code program. Other forms
of optimization can have similar undesirable results.

Java byte-code is interpreted by a virtual machine. All modern Java virtual
machines use, so called, just-in-time (JIT) compilation of byte-code. This
means that code is compiled ‘on the fly’ and that calls to the same method
with the same parameters can take different execution times 4 (if the code
needs to be compiled on the fly or not). If no timing leaks are allowed then this
JIT-compilation has to be disabled and the byte code needs to be interpreted
without optimization.

5.6 Nested Transactions in Java

As far as we know there is no API that implements nested transactions for the
Java Standard Edition. Both the Java Enterprise Edition and the Java tailored
for Smart Cards, Java Card [7], have transaction mechanisms. The former in
the form of the the Java Transaction API 5 and the latter has transactions

4 Assuming the method is evaluated in the same state.
5 http://java.sun.com/products/jta/
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as a core language feature. However both transaction mechanisms only allow
non-nested transactions.

The one actual implementation of a nested transaction mechanism (for a
language of the Java family) we are aware of is the implementation by Lecomte,
Grimaud and Donsez [14] for Java Card. In order to empirically establish how
well our proposed approach works we need to implement a nested transaction
mechanism [16]. We leave this as future work.

6 Conclusions and Future Work

We show that, under certain assumptions, using nested transactions to remove
timing leaks from sequential object oriented programs is feasible. In future
work we want to implement our approach and provide some empirical support
for our work as well as give a better estimate of overhead. Another future
direction of research is to see if we can use transaction mechanisms to enforce
non-interference in a multi-threaded environment.
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A Operational Semantics

In this section we give the timed operational semantics of OO. The set of
values of OO is defined as V = Z ∪ L ∪ {null}, where L is an (infinite) set of
locations, x ∈ X , where X is a set of local variables, n ∈ Z and o is an object
from a set, namely O.

The set State of OO states is defined as the set of pairs 〈sf , h〉 where sf is
a stack of frames, and h is a heap.
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A frame is of the form 〈c, ρ〉 where c is in Comm, ρ is a mapping from local
variables from a set of variables X to values. We distinguish a special variable
res to store results of execution of programs.

Heaps are modeled as a partial function h : L ⇀ O, where the set O of
objects is modeled as F ⇀ V , i.e. as the set of finite functions from F to V .
We let Heap be the set of heaps and R be the set of all variable mappings.
We further use v: C → C → B to denote subclass relation and the functions
static : O → C and dynamic : O → C give the static and dynamic type of
an object respectively, the function cdynamic : C × O → O assigns a (new)
dynamic type to an object. Furthermore we have an allocator function fresh :
Heap×C → L and a function default : C → O which puts a new object on the
heap. The operational semantics of OO can be found in Figure A.1. Note that
we assume that the object this remains unmodified during the execution of
a program.

The relation ; such that ;⊆ T × State × ((ε ∪ V) × R × Heap) for-
malizes –besides the operational semantics–the execution time of OO. Fig-
ure A.1 shows both quantified variables, such as h, or ρ, and constants,
such as t. The set of constants includes constant executions times, namely
tR1 , tR2 , tOP , t:=, tW , tN , tC , for different commands and operations.

We extend the semantics of OO with exceptions in Figure A.2. The excep-
tional states of the form < exc > s where s ∈ State are used for propagation of
exceptions, that is every time that a subexpression or subcommand is evalu-
ated to a state of the form < exc > s, this state is propagated to the containing
expression or command, or in the case of method calls, if a method evaluates
to an exceptional states, the exception is propagated to the caller method.
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〈x, ρ〉 :: fs, h ;tR1
〈ρ(x), ρ〉 :: fs, h

h(o).f = v

〈o.f, ρ〉 :: fs, h ;tR2
〈v, ρ〉 :: fs, h

〈e, ρ〉 :: fs, h ;t 〈e′, ρ〉 :: fs, h′

〈e.f, ρ〉 :: fs, h ;t 〈e′.f, ρ〉 :: fs, h′
v op v′ = v′′

〈v op v′, ρ〉 :: fs, h ;tOP 〈v′′, ρ〉 :: fs, h

〈e1, ρ〉 :: fs, h ;t 〈e′
1, ρ〉 :: fs, h′

〈e1 op e2, ρ〉 :: fs, h ;t 〈e′
1 op e2, ρ〉 :: fs, h′

〈e2, ρ〉 :: fs, h ;t 〈e′
2, ρ〉 :: fs, h′

〈v op e2, ρ〉 :: fs, h ;t 〈v op e′
2, ρ〉 :: fs, h′

〈x := v, ρ〉 :: fs, h ;t:= 〈ε, ρ⊕{x 7→ v}〉 :: fs, h

〈e, ρ〉 :: fs, h ;t 〈e′, ρ〉 :: fs, h′

〈x := e, ρ〉 :: fs, h ;t 〈x := e′, ρ, h′〉

〈e, ρ〉 :: fs, h ;t 〈e′, ρ〉 :: fs, h′

〈x := e.m(~e), ρ〉 :: fs, h ;t 〈x := e′.m(~e), ρ〉 :: fs, h′

〈~e, ρ〉 :: fs, h ;t 〈~e′, ρ〉 :: fs, h′

〈x := o.m(~e), ρ〉 :: fs, h ;t 〈x := o.m(~e′), ρ〉 :: fs, h′

m(~x) := c

〈x := o.m(~v), ρ〉 :: fs, h ;t 〈c, ~x 7→ ~v〉 :: 〈x := res, ρ〉 :: fs, h

〈c1, ρ〉 :: fs, h ;t 〈c′
1, ρ′〉 :: fs, h′

〈c1; c2, ρ〉 :: fs, h ;t 〈c′
1; c2, ρ′〉 :: fs′, h′

〈x := o.m(~v), ρ〉 :: fs, h ;t 〈c, ρ′〉 :: 〈x := res, ρ〉 :: fs, h′

〈x := o.m(~v); c2, ρ〉 :: fs, h ;t 〈c, ρ′〉 :: 〈x := res; c2, ρ′〉 :: fs′, h′

〈ε; c2, ρ〉 :: fs, h ;0 〈c2, ρ′〉 :: fs, h′

〈e, ρ〉 :: fs, h ;t 〈true, ρ〉 :: fs, h′

〈while e do c, ρ〉 :: fs, h ;t 〈c; while e do c, ρ〉 :: fs, h′
〈e, ρ〉 :: fs, h ;t 〈false, ρ〉 :: fs, h′

〈while e do c, ρ〉 :: fs, h ;t 〈ε, ρ〉 :: fs, h′

〈e, ρ〉 :: fs, h ;t 〈true, ρ〉 :: fs, h′

〈if e then c1 else c2, ρ〉 :: fs, h ;t 〈c1, ρ〉 :: fs, h′

〈e, ρ〉 :: fs, h ;t 〈false, ρ〉 :: fs, h′

〈if e then c1 else c2, ρ〉 :: fs, h ;t 〈c2, ρ〉 :: fs, h′

o ∈ dom(h) f ∈ dom(h(o))

〈o.f := v, ρ〉 :: fs, h ;tW 〈ε, ρ, h⊕{o 7→ h(o)⊕{f 7→ v}}〉
〈e2, ρ〉 :: fs, h ;t 〈e′

2, ρ, h′〉
〈o.f := e2, ρ〉 :: fs, h ;t 〈o.f := e′

2, ρ, h′〉

〈e1, ρ〉 :: fs, h ;t 〈e′
1, ρ, h′〉

〈e1.f := e2, ρ〉 :: fs, h ;t 〈e′
1.f := e2, ρ〉 :: fs, h′

〈e, ρ〉 :: fs, h ;t 〈e′, ρ〉 :: fs, h′

〈return e, ρ〉 :: fs, h ;t 〈return e′, ρ, h′〉

〈return v, ρ〉 :: 〈c, ρ〉 :: fs, h ;tR+t:= 〈c, ρ⊕{res 7→ v}〉 :: fs, h 〈return v, ρ〉 :: ε, h ;tR 〈v, ρ〉 :: fs, h

o = fresh(h, C)

〈new C, ρ〉 :: fs, h ;tN 〈o, ρ〉 :: fs, h⊕{o 7→ defaultC}

dynamic(o) v C

〈(C)o, ρ〉 :: fs, h ;tC+tW 〈o, ρ〉 :: fs, h′ ⊕{o 7→ cdynamic(C)}

〈e, ρ〉 :: fs, h ;t 〈e′, ρ〉 :: fs, h′

〈(C)e, ρ〉 :: fs, h ;t 〈(C)e′, ρ〉, h′

Fig. A.1. Small Step Operational Semantics for the core language OO
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〈e1, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈e1 op e2, ρ〉 :: fs, h ;t< exc > s, h′

〈e2, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈v op e2, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈e, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈(C)e, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈e, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈e.f, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈e, ρ〉 :: fs, h ;t< exc > s :: fs′, h′

〈x := e, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈e, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈return e, ρ〉 :: fs, h ;t< exc > s :: fs, h′

o = fresh(h′, Throwable)

〈null.f := e2, ρ〉 :: fs, h ;tN < exc > 〈o, ρ〉, h⊕{o 7→ defaultThrowable}

o = fresh(h′, Throwable)

〈null.m(~e), ρ〉 :: fs, h ;tN < exc > 〈o, ρ〉, h′ ⊕{o 7→ defaultThrowable}

o = fresh(h, Throwable)

〈Throw, ρ〉 :: fs, h ;tN < exc > 〈o, ρ〉, h⊕{o 7→ defaultThrowable}

〈c1, ρ〉 :: fs, h ;t< exc > 〈o, ρ′〉 :: fs, h′

〈try{c1} catch(Exception x){c2}, ρ〉 :: fs, h ;t+t:= 〈c2, ρ′ ⊕{x 7→ o}〉 :: fs, h′

〈c1, ρ〉 :: fs, h ;t< exc > s :: fs, h′

〈c1; c2, ρ〉 :: fs, h ;t< exc > s :: fs, h′

Fig. A.2. Operational Semantics for OO
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