Secure Migration of Mobile Agents based on Distributed Trust

Martijn Warnier

Michel Oey Reinier Timmer

Frances Brazier

Intelligent Interactive Distributed Systems
VU University, Amsterdam
The Netherlands

{warnier, michel, rjtimmer, frances}@cs .vu.nl

Abstract

Integrity of mobile agents in open environments in which
no guarantees can be provided on the integrity of the hosts
on which they run, is an open challenge. This paper
presents a method with which tampering can be detected.
This method is based on the notion of distributed trust; trust
distributed over the hosts involved.

Keywords: Agents Systems, Mobile Agents, Agent Security,
Migration Path Integrity

1. Introduction

Distributed agent systems provide a powerful paradigm
for building large scale distributed systems [5, 6]. Mobility
and autonomy are attractive features of such systems. In
dynamic environments such as e-government, e-health and
e-commerce applications mobile agents provide a means to
process data locally, respecting intellectual property rights
[2].

Mobility and autonomy, however, also provide new chal-
lenges, especially if security is of key concern. The chal-
lenge is to preserve integrity of an agent and the data it col-
lects in open environments: environments that are not under
the control of an agent’s owner.

In closed environments in which all hosts are trusted this
is not a problem: all hosts are known to behave correctly.
Similarly, in more open systems, where agents only migrate
to hosts they trust, the integrity of the agent and its data are
not at significant risk. The use of a separate trust infrastruc-
ture, e.g., a X509-based PKI [4], can, for example, be used
to establish which hosts can be trusted. However, mobile
agents can also be deployed in open systems. In such dy-
namic circumstances it is not always feasible to determine
the trustworthiness of hosts in advance.

In such open environments the malicious host problem
forms a serious threat to the integrity of an agent. It is

closely related to the intrinsic features of mobile agent sys-
tems: agents are executed on hosts that can view, alter their
state, or even delete the agent altogether. This leads to a
number of security problems:

1. Protecting the integrity of the migration path
2. Protecting the integrity of the agent itself

3. Ensuring confidentiality of the agent’s data and (bi-
nary) code

4. Ensuring integrity of the agent’s control flow

The migration of an agent from one host to another is called
a migration step. A migration path is a sequence of multi-
ple migration steps that identifies all the hosts, in order, an
agent has visited.

The integrity of the migration path (item 1, above) is
the basis for detecting malicious hosts and/or preventing
them from doing any harm. For example, a number of tech-
niques [1, 3, 10, 9] have integrity of agents migration paths
as a premise, and can be used to detect tampering with the
agent (items 2 & 4). Confidentiality (item 3) can be ensured
by using encryption of sensitive data.

The main focus of this paper is the detection of breaches
of integrity in migration paths of mobile agents. This pa-
per does not directly address the general problem of pro-
tecting the agent from malicious hosts that alter the agent’s
code or data. However, as stated before, techniques to de-
tect whether an agent has been altered on the basis of its
migration path.

How migration works is the topic of the first section.
Some known solutions for integrity protection are discussed
in the context of their strengths and weaknesses in this con-
text. The next section introduces a new technique with
which the integrity of an agent’s code and data can be de-
rived on the basis of its migration path. This method is
based on distributing trust among the individual hosts of
an agent platform. The paper ends with a discussion and
conclusions.

2. Agent Migration

This paper assumes that a secure distributed mobile
agent system provides the following basic properties: an
agent runs on one single host at a time, is aware of its cur-
rent host, has the ability to migrate to other hosts in the sys-
tem. In addition this paper assumes that the environment
provides a public-key infrastructure with which agents and
hosts can be authenticated. The host on which an agent is
initialized, is assumed to be trusted by the agent’s owner.
This host can be traced by all other hosts at any arbitrary
moment in time. Hosts are assumed to have full control
over the agents they run. The consequence of this assump-
tion is that hosts are assumed to be able to read and alter
information stored inside agents.

Agents preferably only migrate to trusted hosts. How-
ever, a trust relationship does not always give full guaran-
tees on the correct behavior and intentions of hosts. An
agent’s migration path provides a means to detect breaches
of integrity.

The simplest form of migration in a secure agent system
requires sending and receiving hosts to mutually authenti-
cate themselves using a PKI. The integrity of a migrating
agent is ensured by having the sending host create a (digital)
signature of an (hash of the) agent’s code. This signature is
transmitted together with an agent’s code, and data (includ-
ing state). The receiving host can then verify the integrity
of an agent’s code before re-initializing the agent process.

3. Migration Paths

There are roughly two different approaches for record-
ing agent migration paths: (i) use a centralized trusted
third party (TTP) to authorize and keep track of migration
paths or (ii) store (a signature of) migration paths inside
the agents themselves [11]. Both approaches are discussed.
The following notation is used in this paper: capital let-
ters A,B,C,. .. denote hosts, small letters x,y,z,. .. denote
agents, arrows (—) represent migration steps between hosts
and [x] 4 denotes the signature of agent x by host A.

3.1. Centralized Trusted Third Party

A centralized approach requires all migration paths to be
registered. Both sending and receiving hosts register each
and every migration step before and after migration. The
trusted third party authorizes the migration and stores the
migration step in its database together with the commit-
ments of the hosts. This makes it possible to prove, at a
later point in time, that both parties had agreed with the mi-
gration step.

This approach has the advantage that it is relatively easy
to monitor hosts over a period of time. Thus, for example,

Figure 1. Agent migration using a central au-
thority (trusted third party).

if agents tend to disappear on one specific host, this host is
known to be unreliable, possibly malicious. A centralized
trusted third party may prevent agents from migrating to
untrusted and/or unreliable hosts (simply by not authorizing
the migration).

Example 1 below gives a more detailed explanation of a
migration step, using a TTP, by an agent from host A to host
B.

Example 1

A detailed example of the migration of agent x from A —
B using a trusted third party. The migration protocol starts
when:

1. host A suspends and signs agent x: [z] o

2. host A reports to the trusted third party (TTP) that
agent x will migrate from A to B. A sends [x] 4 along
with the report.

3. host A sends agent x to host B

4. host B receives x and computes [x] g which it sends to
the TTP.

5. the TTP verifies that A and B have both signed the
same agent. If the verification passes, the TTP notifies
both A and B that the migration has succeeded, and
adds this migration step to the migration path it keeps
for agent x.

6. host B starts the suspended agent'.

Figure 1 shows the messages that are sent between the
parties. The numbers used in the figure correspond to the
numbers above.

Note that this approach does not prevent hosts from con-
spiring to forge migration paths. For example, malicious
hosts can simply decide to migrate an agent between them-
selves without using the trusted third party. However, af-
ter such an illegal migration, the agent cannot migrate to

Note for the sake of clarity, some details are omitted from this and fol-
lowing examples. This protocol has, for instance, not been secured against
replay attacks. To solve this problem, other techniques, such as adding
freshly generated random numbers to each signature must be applied.

a non-malicious host without being noticed. The trusted
third party, having not been informed of the previous mi-
gration step, will immediately detect something is wrong
and will therefore not authorize the migration. The trusted
third party, however, can not detect whether an agent has
migrated from a malicious to multiple malicious hosts re-
turning to the first malicious host (a cycle), before moving
to a non-malicious host using the trusted third party.

Note also that a centralized approach such as this creates
a central point of failure, and a potential performance bot-
tleneck (i.e., a scalability problem). This problem can be
partially solved by using an agent’s initial host as its trusted
third party?. This is known as a home based approach. The
agent platform Mansion uses a dedicated service: the Agent
Location Service [12] that implements this use of the initial
host as a trusted third party.

3.2. Signature Chain

A method that stores an agent’s migration path fogether
with an agent’s code and data does not suffer the draw-
backs of a single centralized server. The stored migration
path can be protected against tampering using digital signa-
tures [4]. A chain of such signatures can protect a whole
migration path of an agent. In this method, the migration
process includes that a host signs a migration step together
with all (signed) previous migration steps (the chain, signed
by other hosts).

Example 2

A detailed example of the migration step of agent x from
B — C, where B received agent x from A earlier using
signature chaining. Agent x’s signature chain at host B is
[a:, A— B}A.

1. host B suspends and signs agent x and signs B —
C along with the already existing signature chain:
[z,B — C,[v,A — B]a]p. This signature will be-
come a new link in the signature chain.

2. host B sends the agent with the old signature chain,
along with the new link of the chain to C.

3. host C checks the signature chain stored with agent x
and the new link it has received from B.

4. if'the verification of the signatures was successful, host
C adds the new entry to the agent’s signature chain and
starts the suspended agent x.

As signatures can only be generated by individual hosts
and verified by all other hosts, this method ensures breaches
of integrity of the migration path are noticed. The method,

2If all agents are started from the same location these two approaches
are equivalent in terms of scalability.

however, has some drawbacks: for long chains verifying the
complete chain of signatures becomes computationally in-
tensive. A more serious problem is that a malicious host can
remove arbitrary cycles from a migration path. If an agent
(accidentally) visits the same malicious host for a second
time, the malicious host can remove the part of the migra-
tion path between the first time it was hosted by the mali-
cious host and the second. The malicious host can then re-
use the old signature chain in the agent for other purposes.
This cannot be detected by other hosts nor by an agent’s
owner. Finally, if agents disappear, e.g., by having been
killed by a malicious host, outside hosts are not capable of
identifying where something went wrong.

Note that with respect to cycles there is a difference be-
tween the trusted third party approach and the signature
chaining approach. In both approaches a malicious host can
remove cycles from the migration path. In the trusted third
party approach, malicious hosts could remove the migra-
tion path between conspiring malicious hosts ending with
the initial malicious host. In signature chaining a malicious
host can remove a similar cycle which may also have in-
cluded non-malicious hosts.

This paper proposes a distributed approach to integrity
protection of migration paths that can be used to detect
unauthorized modification. The advantages of a distributed
approach are that the solution scales better in a distributed
system and does not have a single point of failure.

4. Secure Migration using Distributed Trust

In essence, the proposed approach for integrity preser-
vation of migration paths entails the distribution of trust to
several hosts on a migration path. This approach assumes
that agents are not allowed to migrate to the host on which it
currently runs (irreflexivity), and that the migration path can
be recorded together with an agent’s code and data. Tam-
pering of the migration path can be detected by either the
agent owner or one ore more receiving hosts.

Briefly, the algorithm works as follows: Suppose agent
x migrates along the path A — B — (. Each migra-
tion step is recorded with the agent. Each step is signed by
the host from which it’s originated. When agent x migrates
from B to C, host B asks host A to sign the migration step
(B — C). The resulting signature is stored with the agent.
When host C' receives the agent and the signatures, it con-
firms receipt to host A. Example 3 below provides a de-
tailed application of the algorithm to a migration step.

Example 3

A detailed example of the migration step B — C' of agent
x. Host B received agent x from host A earlier, using a dis-
tributed trust algorithm. The sequence number (hop count)
used in the migration step A — B isn withn € N:

Figure 2. Agent migration using distributed
trust.

1. host B suspends agent x and asks host A to sign
(z,B — C,n+ 1) (a waiver).

2. host A checks whether the seqnr (n+ 1) corresponds to
the seqnr (n) corresponding to the agent being on host
A. If all is correct, host A signs the waiver and sends
it back to host B. Host A remembers that agent x has
migrated to host C with seqnr n+1.

3. host B adds the signature [x, B — C,n+ 1] 4 to agent
x.

4. host B sends the agent to host C'.

5. host B records that agent x has migrated from itself to
host C' with seqnr n+ 1, and waits for C' to request fur-
ther information. Host C' will contact host B whenever
host C ships agent x to another host.

6. host C' receives agent x, verifies the migration chain
stored in the agent, and contacts host A to acknowl-
edge the receipt of the agent with seqnrn + 1.

7. host A then checks whether the info from C' corre-
sponds to the information it has recorded previously.
If there is a mismatch, it notifies host C of this, so C'
can refuse the agent; otherwise, C' can start agent x.
After this step, assuming the migration from B — C
was successful, host A can delete all info concerning
agent x.

Figure 2 shows the messages that are sent between the
parties, the numbers used in the figure correspond with the
numbers above.

Each waiver is issued only once, and can be used only
once because the receiving host will ‘consume’ the waiver
by contacting the host that issued the waiver. In Example 3,
host C' contacts host A to confirm receipt of the agent. Con-
sequently, a malicious host cannot send an agent to different
hosts, as it can only acquire one waiver for the agent. Fur-
thermore, a malicious host cannot send the agent twice to
the same host (i.e., a replay attack) by reusing a waiver ob-
tained before, because the waiver would have already been

A+ B - c D

Figure 3. Conspiring hosts altering the migra-
tion path.

used. In other words, host B cannot tamper with the migra-
tion path.

The migration path cannot be tampered with by a single
malicious host, because the entries are linked together via
host and sequence number: i) hosts can not cut out a mid-
dle piece, because the sequence numbers will not match,
ii) hosts can not replace a middle piece, because the signa-
tures in the chain of hosts will not match, iii) hosts can not
cut out or replace the tail of a migration chain (including
cycles), as the next receiving host will check the migration
with the previous host in the migration chain, using both the
host and the sequence number. The essence of this approach
is that the responsibility of a migration is spread over two
hosts: the previous host and the next receiving host, i.e., A
and C, in the migration chain A — B — C.

The proposed migration protocol can also withstand two
conspiring malicious hosts trying to manipulate the migra-
tion path between them. For example, suppose that agent
x migrated along the path: P — A — @ — B. Now,
suppose that B conspires with A to try to remove host @
from the migration path pretending that the agent migrated
directly from A to B. However, host P, the predecessor of
A, will not issue the waiver [z, A — B]|p: it has already
issued the waiver [z, A — Q] p and will refuse to issue an-
other one.

Unfortunately, it is still possible for two adjacent con-
spiring malicious hosts to remove a cycle from the migra-
tion path. For example, consider an agent that migrates
through malicious hosts B and C' along the path A — B —
C — ... = C — D, as depicted in Figure 3 (note, the
migration loop at C). In this case, C' can remove the cycle
from the migration path with the help of B before send-
ing the agent to D. C' simply has B issue another waiver
for the migration C' — D. Note that C' can only remove
a cycle if the agent actually returns to C, which the agent
typically cannot be forced to do. If cycles are created, then,
contrary to signature chaining, two adjacent conspiring ma-
licious hosts are always necessary to remove a cycle.

The main reason two malicious hosts can still alter the
migration path is that the receiving hosts assumes that at
least one of these is not malicious. To guard against n ma-
licious hosts, this scheme can be extended to incorporate at
least the n + 1 preceding hosts in handing out the waivers.

5. Discussion and Conclusions

This paper introduces a mechanism to ensure that breach
of integrity in migration paths of mobile agents in large
scale distributed agent systems will be detected. This ap-
proach distributes trust over three hosts during each migra-
tion step. The combination of sequence numbers with sig-
natures guarantees that one or more hosts can detect if part
of the migration path, including cycles, has been removed.

Spreading trust over multiple hosts in an agent system
clearly has benefits in terms of scalability and it strengthens
the security mechanism, since a ‘single point of failure’ no
longer exists. Orthogonally, a dedicated trust model that can
distinguish the —relative— trustworthiness of hosts in multi-
ple agent systems can be of much value as well.

The approach works well in situations with only one (un-
known) malicious host in a migration path, or in environ-
ments with multiple malicious hosts that do not conspire
together. However, if multiple malicious hosts conspire to-
gether the situation becomes more complex. A possible so-
lution is to enforce that agents alternate between trusted and
untrusted hosts [9] in their migration path. In the extreme
situation where only the initial host can be trusted this so-
lution is equivalent to ‘two-hop boomerang agents’ [7], in
which agents always return to their initial host after each
migration step to another host. Another possible solution is
to disallow cycles in migration paths altogether.

The mechanisms needed to instrument this approach
are currently being implemented in in the agent platform
AgentScape [8].

Acknowledgments

This research is conducted as part of the ACCESS project?
funded by the NWO TOKEN program. The authors thank
Stichting NLnet for their support and Benno Overeinder for
useful comments on earlier drafts of this paper.

References

[1] E. Bierman and E. Cloete. Classification of malicious host
threats in mobile agent computing. In Proceedings of the
2002 annual research conference of the South African in-
stitute of computer scientists and information technologists
on Enablement through technology, pages 141-148. South
African Institute for Computer Scientists and Information
Technologists Republic of South Africa, 2002.

[2] D. de Groot, M. Boonk, F. Brazier, and A. Oskamp. Issues
in a mobile agent-based multimedia retrieval scenario. In
Proceedings of The 4th Workshop on the Law and Electronic
Agents (LEA 2005), pages 33—43, June 2005.

3http://www.iids.org/access

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

(1]

(12]

G. Karjoth, N. Asokan, and C. Gililcii. Protecting the compu-
tation results of free-roaming agents. Personal Technologies,
2(2):92-99, 1998.

C. Kaufman, R. Perlman, and M. Speciner. Network Secu-
rity, PRIVATE Communication in a PUBLIC World. Prentice
Hall, 2nd edition, 2002.

D. Kotz and R. Gray. Mobile Agents and the Future of the
Internet. Operating Systems Review, 33(3):7-13, 1999.

M. Luck, P. McBurney, and C. Preist. Agent Technol-
ogy: Enabling Next Generation Computing (A Roadmap for
Agent Based Computing). AgentLink, 2003.

J. Ordille. When agents roam, who can you trust? In In the
Proceedings of the First Annual Conference on Emerging
Technologies and Applications in Communications, pages
188-191, 1996.

B. Overeinder and F. Brazier. Scalable middleware environ-
ment for agent-based internet applications. In Proceedings
of the Workshop on State-of-the-Art in Scientific Computing
(PARA’04), volume 3732 of LNCS, pages 675-679, Copen-
hagen, Denmark, 2004. Springer.

V. Roth. Mutual protection of co-operating agents. In
J. Vitek and C. Jensen, editors, Secure Internet program-
ming: security issues for mobile and distributed objects, vol-
ume 1603 of LNCS, pages 275-285. Springer-Verlag, 2001.
T. Sander and C. Tschudin. Protecting Mobile Agents
Against Malicious Hosts. Mobile Agents and Security, 60,
1998.

A. Saxena and B. Soh. Authenticating mobile agent plat-
forms using signature chaining without trusted third par-
ties. In In the Proceedings of the 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service,
(EEE’05)., pages 282-285, 2005.

G. van 't Noordende, F. Brazier, and A. Tanenbaum. Se-
curity in a mobile agent system. In Proceedings of the First
IEEE Symposium on Multi-Agent Security and Survivability,
Philadelphia, 2004.

