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Abstract. Automated and efficient energy management has many po-
tential benefits for producers and consumers of energy, and the environ-
ment. Focusing on energy management on the consumer side, this paper
considers two forms of energy management: minimizing energy usage in
single households and avoiding peaks in energy consumption in a larger
area.

A combination of context aware and autonomic computing is used to
describe an automated and self-managing system that, by analyzing con-
text information and adapting to its environment, can learn the behavior
of household occupants. Based on this information, together with user
defined policies, energy usage is lowered by selectively powering down
devices. By powering specific thermostatically controlled devices on or
off energy can also be redistributed over time. This is utilized to avoid
global peaks in energy usage.

The self-managing system reasons about context and other information
and acts when required. This information is the knowledge with which
it can adaptively reason, about to take to ensure efficient energy us-
age. This paper explores the requirements that hold for representing this
knowledge and how the knowledge base can continuously and adaptively
be updated: to be self-managing.

1 Introduction

Efficient energy management forms an important challenge in today’s society as
conventional energy sources become more and more scarce and more eco-friendly
alternatives are not yet evaluated at a large scale. Automated approaches to
efficient energy management are currently still limited and mostly used by large
power consumers such as factories [10, 16, 17], but with the advancement of the
Smart Grid [2] and other recent advancements in sensor networks [1, 19], such
as cognitive networks [18], this changes rapidly.

This paper addresses this challenge at two different, and possibly conflict-
ing, levels: (i) at the level of a single household, where the goal is to lower



energy consumption and (ii) at the level of group of households (a neighbour-
hood), where the goal is to lower peak usage in energy consumption. In [15] a
new approach based on autonomic and context aware computing is introduced.
This paper extends that approach. It explores the requirements for an adaptive
knowledge representation in the context of a home energy management system.
The system exploits sensor information to monitor electric appliances and their
surroundings. Based on this environmental information the status of appliances
is updated, influencing energy consumption.

The core of the home energy management system is formed by a rule based
system [5]. Such systems are typically very deterministic in nature, always pro-
ducing the same outcomes for the same input: a more dynamic approach is
required for self-management. Therefore, the main challenge addressed in this
paper is the question how, in the context of a home energy management sys-
tem, a knowledge base can continuously and adaptively be updated: to become
self-managing.

The remainder of this paper is organized as follows: in the next section the
approach introduced in [15] is summarized. Section 3 discusses requirements for
the self-managing home energy system and Section 4 outlines an approach to
adaptive and self-managing knowledge representation. The paper ends with a
brief discussion and conclusions.

2 An Autonomic and Context Aware Home Energy
Management System

A new green computing approach on the consumer side (demand side manage-
ment) is proposed in [15]. The proposed system considers two forms of energy
management: minimizing energy usage in single household and avoiding peaks
in energy usage for a larger residential area. A basic architecture is proposed to
achieve this goal. A service oriented framework, based on the complementary ap-
proaches of autonomic computing and context aware computing, is introduced.
Context information is continuously used to analyze the energy requirements of
a household. Based on this information, the home energy management system
determines whether and how to influence the energy consumption of individ-
ual devices. By selectively powering thermostatically controlled devices –such as
fridges, air conditioning units, electrical heating– on or off, energy consumption
is redistributed over time [12, 15] avoiding peaks in energy usage. Such devices
make up around 25% of the total energy consumption in the USA [9].

Residences of the household can add their own preferred energy usage profile.
The resulting service oriented framework reduces energy usage in households in
an intelligent and user friendly manner. Actual consumption can be analyzed
with respect to consumption constraints set by the system. If either consumption
constraints are (close to being) violated or user needs are unnecessarily high, then
energy consumption should be decreased and corresponding control actions need
to be exercised on the appliances of interest.



Fig. 1 illustrates the proposed architecture of the home energy management
system.
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Fig. 1. The basic architecture of the home energy management system. Adapted
from [15].

The MAPE (monitor, analyze, plan, and execute) control loop from auto-
nomic computing [6] is adapted to be used to analyzing energy consumption of
electrical appliances. Considering a pool of electrical appliances that are instru-
mented to allow monitoring and control. The monitoring consists of measuring
the energy consumption of these appliances. The measurements are fed to a
control process (the Appliances Management Process or AMP in Fig. 1), which
interprets these as the actual consumption, and compares the consumption with
the consumption constraints (in the Decision Unit in Fig. 1). If, as a result of
this analysis, it is decided that control actions are needed, an action plan is
produced. The action plan is derived with an algorithm that considers time-
shifting of the active state of appliances. Subsequently, the plan is executed (in
the Action Performer in Fig. 1) by performing the indicated control actions on
the selected appliances. Figure 1 illustrates the application of the MAPE control



loop in the top of the figure. The Decision Unit, which forms the focus of this
paper (see Fig. 1) is discussed in detail in Section 4.

With regard to analyzing consumer needs, the event-control-action (ECA)
pattern from context-aware computing [4] is used. Figure 1 illustrates the appli-
cation of the ECA pattern at the bottom of the figure. The environment of the
appliances is considered. It is assumed that this environment is instrumented
with sensors that are able to measure relevant conditions. For example, mea-
surements may be used to determine context changes or situations, such as the
presence of one or more persons in the house or in a particular room, the activity
mode (sitting, walking, sleeping) of a person, or a person entering or leaving the
house. Context situations and changes can generally not be directly or reliably
measured by a single sensor. A context management process (the CMP in Fig. 1)
is responsible for producing events that indicate the occurrence of a context situ-
ation or change, based on reasoning which potentially involves sensor data from
several sources. Events are fed to a control process, which applies them in rules
to determine actions related to perceived needs. For example, if nobody is in the
house, a rule may establish the action to set the preferred value of the heating
at 15 degrees Celsius. Whether the actions are really required depends on the
supported needs. For example, if the preferred value of the heating is already set
to 15 degrees Celsius, no action is needed. The comparison of the perceived and
supported needs leads to an action plan, which, if not empty, is subsequently
executed by performing the indicated control actions on the selected appliances.

A service-orientated architecture (SOA) is used to implement the approaches
outlined above, see [15] for more details.

3 Requirements for Knowledge Representation

The high level goal of the energy management system is twofold: On the one
hand, on the household level, the system should minimize the total energy con-
sumption of the household, within fixed boundaries set by the household owner.
On the other hand, on the neighborhood level, the system should minimize
fluctuations in energy demand, i.e., keep the energy consumption of the whole
neighborhood as constant as possible. Note that these goals can be conflict-
ing. Energy providers can prioritise one over the other by providing (monetary)
incentives. The energy management system’s high level goals provide the first
system’s requirement:

1. the system should be flexible enough to optimize either of the two high-level
goals of the system: minimize local energy consumption or minimize global
fluctuations in energy consumption

Moreover, the system needs to be highly adaptive, in particular:

2. the system should be able to adapt its behavior at runtime and change the
high-level goal, depending on input from the environment



Finally, users should be able to customize the systems to their specific needs,
setting limits to the adaptive behavior of the system:

3. users, i.e., home owners, should be able to customize the system to their
specific needs.

Note that the last requirement is the most important one. This can potentially
limit the adaptive behavior of the systems. However, it is crucial that users
should be able to override the energy management system, even if this means
that, for example, the air condition is set to maximum in each room. No users
will allow a fully autonomous system to manage their energy usage. This issue
is discussed further in Section 5.

4 Towards Adaptive and Self-Managing Knowledge
Representation

The main self-managing component of the energy management system is formed
by the Decision unit shown in Fig. 1. This unit has to (autonomously) decide
how appliances are adjusted to meet the goals of the system. Fig. 2 shows the
decision unit in detail.
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Fig. 2. The decision unit from Fig. 1.



The decision unit as a whole takes input from four different sources, namely
(i) sensor input, (ii) user input, (iii) other control process units (CPs) at other
households and (iv) rules. The sensor input comes from the Context Management
Process (CMP) and the Appliances Management Process (AMP). These units
process the sensor information and provide (aggregated) context and appliances
status information which forms the basis for the adaption process. The user input
gives the home owner the opportunity to override the (autonomous) decision
unit, for example, indicating that the air conditioning unit in a room cannot be
put off.

To meet the goal of the system, global (at a neighborhood level) minimiza-
tion of the fluctuations in energy consumption, the control processes (CPs) in
individual households need to communicate with each other. The CPs can be
organized in a virtual tree overlay [13] and work together to meet this goal, for
example using the approach outlined in [12, 14].

The heart of the Decision Unit is formed by a rule based system which
consist of Rule Select, Rule Adapt and Rule Engine components, see Fig. 2. It is
assumed, since the application domain is known and unlikely to change rapidly,
that the knowledge base of the home energy system uses a fixed ontology, i.e.,
all rules are formulated in the same (fixed) language. Rule based systems are
traditionally very deterministic systems. They consist of rules of the form shown
in Example 1 below:

Example 1 (Rule base system)

matching condition 1 ⇒ effect 1
matching condition 2 ⇒ effect 2
. . . . . .
matching condition n⇒ effect n

4

By default the ordering of the rules defines the (operational) semantics of the
system. Rules are evaluated in order, and the first rule with a matching condition
is executed, i.e., later rules that might match are discarded. Execution of a
rule leads to an effect. In this case something like altering the status of an
appliance, i.e., lowering the temperature of a fridge. Since the environment will
change continuously different rules will be executed over time. However, given the
same conditions the same rules will be executed, making the system completely
deterministic (static). To make the system more adaptive to its environment it
should evolve over time, to meet the demands of a specific household. There
are several options that can be used to make the rule based system adaptive,
these include: (i) load specific set of rules based on the environment, for
example in the rule select unit a specific set of rules can be loaded that has as
goal to minimize global fluctuations instead of minimizing the local energy use



of a household. (ii) evolving rules, the rules can be changed based on genetic
algorithms [3] or a neural network [7]. (iii)weighted rules, in this approach
all rules are weighted. Instead of executing the first matching rule all rules are
selected and the rule with the highest weight is executed. Fuzzy logic [8] like
approaches can be used for this. (iv) hybrid approach, combine some of the
options above.

Evolving rules (item 2 above) effectively is typically difficult. Neural networks
and genetic algorithms try to merge and combine existing rules to produce new
(better) ones. However, a fitness function is required to determine if a newly
generated rule is better then existing ones. Finding a suitable fitness function
is typically very hard. Therefore this alternative is not further studied in detail
here. Instead, a hybrid approach that combines item 1 and 3 above is explored.
The proposed adaptive rule based system has the following properties:

– rules are weighted
– rules are bundled in a set, called the device set, per device
– rules can be added and removed per set
– sets can be added and removed to the rule base, the active rule sets that are

used by the rule engine

For each device there is an associated device set, consisting of weighted rules,
that determines the (adaptive) behavior of the device. Consider, for example,
the following three rules, shown in Example 2 below, that are part of the device
set for controlling the ac-unit in the master bedroom:

Example 2 (Weighted Rules controlling an AC unit)

. . . . . .
(0.3) #people in room ≥ 1 & t > tmax & AC = off ⇒ AC = on & cooling=10
(0.7) #people in room ≥ 1 & t > tmax & AC = off ⇒ AC = on & cooling=2
. . . . . .
(0.5) #people in room = 0 & AC = on ⇒ AC = off
. . . . . .

4

All three rules have a weight (0.3, 0.7 and 0.5 respectively). The first two rules
share the same pre-conditioning, that evaluates to the value true if there is more
then one person in the room, the ac-unit is turned off and the current tempera-
ture (t) is higher then some predetermined temperature (tmax, for example 25
degrees Celsius). However, the result of executing the rules is different: executing
the first rule results in turning the AC unit at setting 10, in the second case the
AC unit is turned on at setting 2. A higher setting leads to a faster cooling of the
room, but also a higher (at least initial) energy consumption. Since both these



rules share the same precondition, the one with the highest weight (the second
rule with weight 0.7) is executed.

By adapting the weights of rules, different energy consumption patterns
emerge. Again looking at the two rules mentioned above, in the current situ-
ation energy consumption is low over a longer period. If the weights of the two
rules are swapped, the result would be a higher energy consumption, but for a
longer period. In effect, the first mechanism that is used to adapt the system is
this changing (adapting) of the weights of the rules. This makes it is possible to
adapt the reaction of the system to a specific situation.

Note that the third rule (with weight 0.5) has a different pre-condition. It
evaluates to true if there is no one in the room and the AC unit is on. The effect
of executing the rule is that the AC unit is turned off.

The Rule Select unit (from Fig. 2) loads selected device sets into the rule en-
gine. By periodically loading different rules into the rule engine, i.e., by changing
the rule base, the system adapts to its environment. Based on input from the en-
vironment different (possibly conflicting) high level goals can be met by different
rule-bases. This loading of different device sets provides the second adaptation
mechanism of the system.

User input, i.e., from home owners, can be mapped easily to rules that deal
with a specific appliance, for example, the air conditioning unit in the bedroom.
The rule is seen in the Example 3:

Example 3 (User generated Rule controlling an AC unit)

(1.0) true ⇒ AC = on

4

User generated rules should always evaluate to true (hence the pre-condition
in the rule above). Also note that such rules should always be loaded (unless
specifically cancelled by the user) and should have high weights (in this example,
the maximum value of 1.0) to ensure that user generated rules are executed.
Finally, note that the weight of such rules should, in principal, not be adapted
by the system.

The system provides two adaptation mechanisms: weight adaptation which
is handled by the adapt rule component and selective device set loading (and
unloading), which is handled by the rule select unit. Separating these mechanisms
has the advantage that its easier to reason about adaptation policies at a higher
(strategic) level. This is left for future work, as are specific rule adaptation
policies.

In summary, the Decision Unit takes input from the user and other CPs.
Based on input from the environment (sensor info), weighted rules are adapted
and selected. The rule engine selects all matching rules and chooses the ones that
have the highest weight per appliance. These are then send to the action per-
former which adapts the status of the appliances. This whole process is repeated
periodically.



5 Discussion and Conclusions

This paper discusses an approach and architecture for a home energy system
based on an adaptive and self-managing knowledge representation. The system
is based on a weighted rule based system that adapts continuously to its en-
vironment. One of the main challenges of this system is to meet its different,
possibly conflicting, goals. And while the current architecture should make this
possible it remains to be seen if these goals are not too conflicting to be unifi-
able in practice. It might be necessary to drop the goal of lowering the global
fluctuations in energy consumption to meet the user’s preferences and minimize
the local energy consumption of the household. Simulations and/or experiments
should provide more insight on this issue. This is left for future work.

Another issue is how to scale this up to collections of households. A hierarchi-
cal structure could be used in which the architecture can be repeated at different
levels of granularity. For example, a household has appliances as units that are
being controlled; an apartment has living units as the units that are being con-
trolled; a city block has apartments as units being controlled; etc. Finding the
correct clustering of households [11] that are controlled by one processing unit
forms another challenge.

From a technical perspective it is not very difficult, with the proposed archi-
tecture, to force control processes in different households to cooperate to reduce
peaks in (global) energy usage. However, this might lead to some considerable
discomfort with home owners, for example if they can use their air conditioning
unit at the maximum setting, because a global reduction in energy consump-
tion is required. Monetary incentives, provided by energy producers who benefit
from reduced peak usage, might help lessen the discomfort of the home owner,
as would specific policies set by local governments. However, if this will be an
acceptable solution remains to be seen. This issue is further outside the scope of
this paper.

A related issue is if an (semi) autonomous home energy management system
will be accepted by users. However, since there is both a monetary incentive
(energy usage is lowered which in turn leads to a lower energy bill) and since
users can override the behavior of the system this is probably less of an issue
then the one discussed above.
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