
Security in Large-Scale Open Distributed
Multi-Agent Systems

M.A. Oey M. Warnier F.M.T. Brazier

Delft University of Technology, The Netherlands

1 Introduction
Designing large-scale distributed multi-agent systems that operate in open environ-
ments, such as the Internet, creates new challenges, especially with respect to security
issues. Agents are autonomous, pro-active, communicative, goal-directed, often ca-
pable of learning, and sometimes mobile [8]. Mobile agents traverse the network to
access services and resources they need to achieve the goals they pursue. The potential
of mobile agent technology in sectors such as E-Commerce [17, 18], E-Health [29]
and E-Governance [10, 52] is well recognized. In these sectors, security issues such
as authentication, authorization, privacy, and copyright are of utmost importance. Data
access control is mandatory: by moving agents to the location at which data is stored,
data access and processing can be done locally and controlled.

Many security requirements need to be addressed for large-scale distributed multi-
agent systems in open environments. The focus of this chapter lies on security require-
ments specific for agent systems rather than security requirements for distributed com-
puters systems in general. Section 2 identifies the most relevant security requirements
for agent systems. This set of requirements is a minimum that needs to be fulfilled
for secure agent systems in open environments. Sections 3 through 7 discuss the secu-
rity requirements and possible solutions in detail. The solutions are illustrated within
the context of the AgentScape [20] agent platform. This platform has been chosen as
it has been specially designed to be used in a large-scale, distributed, open environ-
ment. However, similar implementations of these solutions are possible in other agent
platforms.

The chapter closes with an overview of a number of well-known agent platforms,
such as AgentScape [20], Ajanta [23], SeMoA [41], and JADE [5] with its security
extensions JADE-S [34] and S-Agent [16]. The discussion focuses on what techniques
these agent systems have used to solve some of the discussed security requirements.

2 Security Issues in Agent Systems
An agent system, a specific type of distributed computer system, needs to address not
only security requirements related to distributed computer systems, but also multi-
agent system specific security requirements. This section identifies a minimum set
of security requirements specific to multi-agent systems that needs to be fulfilled for it
to operate securely in an open environment.



2.1 Principals in an Agent System
Conceptually, multi-agent systems are distributed, networked, computer systems in
which agent owners run communicating agents that access resources on hosts, each
of which runs an agent platform (i.e., an instance of an agent middleware) that is under
the control of a platform administrator.1 The bold terms are the major principals in
a multi-agent system.

Each of these principals faces security threats. A secure agent system must protect
these principals and their communication with other principals against security threats.
For example, secure communication is needed to protect the communication between
two agents, but also between two platforms and between an agent and a platform or the
agent’s owner. In a large scale, distributed system, such as the Internet, communication
is usually over long distances and can be intercepted or monitored. In a closed envi-
ronment, all principals in an agent system are known in advance and usually trusted,
therefore, security measures are often implicit. However, in a more open environment,
more explicit security measures are needed to guard against security threats.

Traditionally, security threats are described using the terms confidentiality, in-
tegrity, and availability: the CIA-triad [46]. Confidentiality refers to the ability to
prevent access to those that are not authorized. Integrity refers to the ability to prevent
any unauthorized modification. Availability refers to keeping resources accessible at
all times to authorized parties. A prerequisite for guarding confidentiality, integrity,
and availability is identity management [9], which encompasses naming and authen-
tication. Naming is the ability to identify each individual principal in an agent system.
Authentication is the ability to verify a principal’s identity. For example, reliable au-
thentication is needed as malicious parties may want to impersonate certain principals
in order to gain access to that principal’s privileges.

The next sections look at security threats in an agent system from the viewpoint
of the two most important stakeholders in an agent system: the agent owner and the
agent platform’s administrator.

2.2 Security Threats for the Agent’s Owner
An agent performs its actions on behalf of its owner, which is usually a legal entity,
such as a human or an organization: the agent owner. The main security concerns for
an agent owner are confidentiality and integrity of his agent, any data it carries, and any
communication to and from the agent. Confidentiality is directly related to guarding
the privacy of an agent’s owner. For example, in an e-health environment, agents acting
on behalf of patients carry privacy-sensitive information that should not be revealed to
others.

Agent mobility introduces extra security risks, as agents run on hosts that are out
of the control of the agent’s owner. For example, malicious parties can start agent plat-
forms with the intent to eavesdrop or manipulate agents that they host. This malicious
host problem is hard to solve, as platforms in general have full control over the agents
that run on them. The most effective solutions involve the use of trusted hardware.

1The term agent platform or middleware refers to software running on hosts to support agents; agent
system refers to the whole system of agents, agent owners, agent platforms, platform administrators, etc.



Unfortunately, these solutions are usually also the more costly solutions to implement.
Software-only solutions give less protection but are more practical to implement. The
malicious host problem exists foremost in open environments. It is reasonable to as-
sume that in closed environments all hosts are trusted to behave well and that adequate
authorization mechanisms have been installed to prevent unauthorized users of the
platform to have access to an agent’s private data.

Availability of an agent is a requirement for an agent owner that can be imple-
mented by an agent owner himself, possibly supported by a platform. For example, to
make an agent more fault tolerant, an agent owner can start two (or more) copies of
an agent and send them to different platforms, so that if one agent dies, the other can
continue, keeping the agent available to its owner. Alternatively, an agent owner can
trust a platform owner to take adequate measures to guarantee the availability of an
agent platform.

2.3 Security Threats for the Platform’s Administrator
A host’s administrator can run an agent platform (i.e., an instance of the agent middle-
ware) on his host. An agent platform enables visiting agents to (paid) access to a host’s
resources. The main security concerns for an agent platform’s administrator (who is
not necessarily the same as the host’s administrator) are confidentiality, integrity, and
availability of the agent platform, its resources, and any communication from and to
the agent platform.

In open environments, a platform must prepare for deliberate attacks, from outside,
as well as inside. Mobile malicious agents can first migrate to a platform and try
to attack a platform from the inside. Attacks typically include gaining unauthorized
access to a host’s resources or accessing the data of other agents running on that host.
To protect against the threat of malicious agents a resource access control mechanism
must be installed that enforces an authorization mechanism that determines who is
allowed to access which resource and to what extent.

A typical resource in an agent system that may be the target of availability threats
is the lookup service. The lookup service is a database that keeps track of the current
locations of all agents in an agent system. An agent system needs this information, for
example, to deliver messages to agents sent from other agents. In an open environment,
an attacker could start an agent platform, join the agent community and subsequently
fill the lookup service with false information about locations of agents. This attack
renders the information in a lookup service useless and consequently paralyzes an agent
system as a whole. This specific attack is a form of a Denial-of-Service attack and
illustrates the necessity of a secure lookup service which guarantees the correctness
of its information. Without it, a platform administrator cannot guarantee the availability
of the agent platform.

2.4 Summary
The next list summarizes the security requirements discussed in this section. Each
requirement is either a prerequisite for security or is associated with a threat for one of
the two main principals in an agent system: agent owner or platform administrator.



• Prerequisite: Naming and Authentication – the ability to verify the identity of
principals

• Prerequisite: Communication Security – confidentiality and integrity of data
sent between agents, services, hosts, etc. must be guaranteed.

• Agent owner: Malicious Host protecting an agent’s confidentiality and integrity
even if it runs on a malicious host.

• Platform administrator: Malicious Agent – protecting a host’s confidentiality
and integrity from malicious agents

• Platform administrator: Secure Lookup Service – guarding the information in
the lookup service.

This set of security requirements forms a bare minimum for agent systems in open envi-
ronments. In addition to these security requirements other requirements common to all
distributed computer systems need to be addressed, such as fault tolerance, availability,
backups, traceability, etc. For agent systems in specific domains more stricter secu-
rity requirements may apply as well. For example, in privacy sensitive environments
anonymity may be an important requirement.

The remainder of this chapter focuses on the specific security requirements in order.
Each requirement is discussed in more detail and one or more possible solutions are
presented. Sections 3 and 4 discuss the prerequisites naming and authentication, and
communication security. Next, Section 5 focuses on the main security threat to an
agent owner: the malicious host. Finally, Sections 6 and 7 look at threats to a platform
administrator and discuss the malicious agent and a secure lookup service.

3 Naming and Authentication
As mentioned above, identity management is an important security requirement in an
open, distributed agent system. The ability to name principals and authenticate them is
an important part of identity management.

3.1 Naming
Before authentication can be done, principals in an agent system must first have a
(unique) identifier: a name. This name does not have to be human-readable; it can
be a meaningless string, as long as it is machine-readable. In principle, names can be
static, which means they do not change over the lifetime of a principal, or dynamic. For
humans and organizations static names are a more logical choice, however for (mobile)
agents in an agent system, dynamic names have their use. For example, agent names
could contain a reference to the location where an agent resides (location-dependent
names, see also Section 7), which makes locating the agent trivial. However, for the
remainder of this chapter it is assumed that principals have globally unique identifiers
(GUIDs), which are static names. The term global does not necessarily have to imply
that the identifier is unique in the universe, but it suffices that the identifier is unique



within an instance of a running agent system. It can be assumed that in any agent
system, something similar to GUIDs is used to name principals.

Another property of naming is whether principals can have more than one name.
For example, if an agent has multiple names, it can use these names as pseudonyms.
Pseudonyms can be used to implement anonymity [51]: an agent can use a different
pseudonym for each interaction with another agent.

To illustrate, AgentScape [20] (see Section 8) actually has two naming schemes.
First, agents are identified internally by GUIDs, which are kept private to the middle-
ware. Second, agents are externally visible through their (static) handles. Each agent
can have more than one handle at a time, which allows them to implement a form of
anonymity as each handle is a pseudonym.

Note that naming is not sufficient for authentication as there is no mechanism to
verify that a name corresponds to the correct principal. Authentication is discussed in
the next section.

3.2 Authentication: a Public Key Infrastructure
Many ways of authentication are known and used in the world. One well-known
method is the use of username and password combinations. Only if the correct pass-
word is supplied is the user authenticated. A more elaborate scheme requires a PKI, a
Public Key Infrastructure, that uses asymmetric key encryption also known as public-
key cryptography [27]. Every principal (agent, user, host, etc.) that needs to be able to
be authenticated creates a key-pair, consisting of a public and a private key. These keys
have the property that data encrypted with one key can be decrypted by the other, and
given one key it is computationally infeasible to derive the other key. Every principal
publishes its public key to the world, but keeps its own private key private. The iden-
tity of a principal can now be verified by checking whether the principal can correctly
decrypt a message encrypted with the principal’s public key. Only the real owner of
that public-private key pair can decrypt the message assuming the private key has been
kept private. Whether the public key is indeed the public key of the correct principal
and not of an imposter impersonating that principal using its own generated keypair is
the task of the PKI.

The public key infrastructure is used to securely publish public keys of principals.
A public key is published together with the corresponding principal’s personalia. This
combination is called a certificate. This certificate is also (digitally) signed [25] by
a Certificate Authority (CA), after it has verified that the public key and principal
are indeed legitimate, which, for example, involves showing a passport to an official
of the CA. All principals publish their public key in the form of signed certificates.
Anyone who trusts the signing CA can use that certificate and be confident that the
public key and the principal both stated in the certificate are valid and belong to each
other. In short, an agent system is able to solve the authentication problem by using
a PKI, where all principals create a public/private keypair and a trusted CA signs all
corresponding certificates.

For completeness, signing a certificate is done by adding an encrypted version of
the certificate (actually, a hash of it) to the certificate. Encryption is done with the
private key of the CA, which means that everyone can verify the signature with the



public key of the CA, but nobody can forge the signature. The public key of the CA is
assumed to have been distributed securely to all participants. Note that safely distribut-
ing the certificates of a handful of CAs is more feasible than distributing the certificates
of all participants.

In AgentScape, a public key infrastructure is installed. Agent owners, locations,
and hosts have public and private key pairs. This ensures that locations and hosts
can mutually authenticate and set up secure communication channels, using SSL (see
Section 4).

3.3 Linking an Agent and its Owner
In many situations, an agent must be uniquely and undeniably linked to its owner (e.g.,
a human or organization). This link is part of authenticating an agent and is necessary,
for example, to charge the owner if agents make purchases on the web or to help de-
termine liability whenever agents misbehave. This section discusses, in the context of
agent based systems, how agents can be ‘bound’ to their owner.

As mentioned before, it is assumed that an agent can be identified by a GUID. Con-
ceptually, an agent consists of meta-data, (executable) code, and data that an agent has
‘found’ on a particular host. The meta-data of an agent contains at least the following:
the GUID of this agent, the name of this agent’s owner, and a signed (by the owner)
hash of this agent’s code. The signature ensures that agent and owner are bound to
each other. For authentication to succeed, it is important that the public key of an agent
owner is stored in a PKI.

For example, in AgentScape, when an agent is injected, the agent platform checks if
the agent code is indeed signed. If verification is successful the agent obtains a GUID
and a handle is returned to the agent owner. Assuming the owner keeps this handle
secret, it can be used to communicate between agent and owner. Next, the injected
agent is started by the agent platform. If the agent misbehaves in some way, the owner
can be contacted and be held responsible for the agent’s actions. The agent injection
procedure is similar in other agent systems.

4 Communication Security
In distributed agent systems communication is manifold. The (distributed) compo-
nents that make up the agent system’s middleware need to communicate with each
other to maintain a running agent platform, and the agents themselves communicate
with each other, with (external) services, and with the platform. Confidentiality of
communication between agents, services, hosts, etc. must be guaranteed. Threats can
be external or internal. External eavesdroppers may want to listen in on agents to find
out privacy-related information, may want to disrupt the agent platform, or may want
to impersonate other agents or services, etc.



4.1 Common Security Attacks
Many types of attacks are known that target communication channels. Two very com-
mon attacks are man-in-the-middle attacks and replay attacks. This section briefly
explains these two attacks to illustrate the kind of attacks possible on communication
channels. For clarity, the names Alice, Bob, and Mallory, which are commonly used in
cryptography, are used to explain these security attacks.

With a man-in-the-middle attack, an attacker (Mallory) tries to put himself in
between the communication path of two others (Bob and Alice). When Bob tries to
contact Alice, Mallory steps in posing as Alice, and forwards the request to Alice,
but now pretending to be Bob. As a result, Bob and Alice both think they are talking
privately to each other, while in fact Mallory is able to intercept all data that is sent by
them. This form of attack succeeds if Mallory is able to impersonate Bob and Alice
successfully. A replay attack is a threat where an attacker deliberately resends or
delays messages that were sent previously. Since the attacker does not alter messages,
the receiving party does not have any reason to refuse incoming messages, unless it has
the ability to detect that a message is a resent copy or an old delayed message. To see
the effect of a replay attack, consider the consequences of a message that contains a
money-transfer order for an online bank application.

4.2 Encryption
A common technique to guarantee confidentiality and integrity of communication is
encryption. Two well-known techniques are SSL-based communication [32] and
IPsec [26]. SSL is widely used to provide secure connections to webservers (e.g.,
the https protocol). All data sent over a connection between two parties is encrypted
with a shared-key. The key is exchanged in a hand-shake phase during the setup of
the connection. Authentication, that is, the method to ensure that a party actually is
who he/she claims to be, usually involves a certificate signed by a trusted third party
(i.e., a certificate authority) whom both communicating parties trust. After the hand-
shake successfully completes, both parties can be assured that their communication
remains confidential. In agent systems, the setup of the encrypted SSL-connection is
usually done by the agent middleware. As a consequence, the agent middleware’s in-
ternal communication is also secure. In addition, all agent-to-agent communication
is automatically encrypted transparently, under the assumption that communication is
supported by the agent middleware, which is almost always the case.

The other technique is IPsec. This protocol uses encryption at a much lower level
than SSL does. SSL uses encryption at the application level, which means the encryp-
tion is performed by the application, an agent platform. In contrast, IPsec is performed
by the underlying operating system. The advantage of this technique is that both agent
application developers and agent system developers have secure communication avail-
able to them automatically. However, most agent platforms provide their own secure
communication (usually via SSL) as it is relatively simple to implement and they then
do not have to rely on the underlying operating system to support IPsec.

For example, AgentScape currently supports SSL-based communication between
hosts and locations. This provides the basis for hosts/locations to authenticate each



other. Furthermore, all messages transmitted between hosts/locations, including mi-
gration of agents, are encrypted to ensure confidentiality. The PKI is used to link
host/location identities in a secure manner.

5 Malicious Hosts
To an agent owner, protecting an agent’s code and the data it has acquired while travers-
ing a network is his main security concern. Especially, when agents are used in open
environments such as the Internet, where agents execute outside the control of the
agent’s owner. Hosts on which an agent resides may be malicious, yet temporarily
have complete control of the agent’s runtime environment. It is often infeasible to
determine the trustworthiness of hosts in advance in open environments.

Unfortunately, in practice, it is almost impossible to protect a migrating agent if it
runs on hosts that are outside the control of an agent’s owner. Such a malicious host
can view and alter an the agents (internal) state, or even delete the agent altogether.
However, some hardware and software solutions exist that try to provide security guar-
antees or at least allow others to detect that an agent has been tampered with by a
malicious host. Below some of these solutions are discussed.

In principle, protecting agents from malicious hosts requires [39]:

1. Protecting the integrity of the migration path of an agent

2. Protecting the integrity of the agent’s data and (binary) code

3. Ensuring confidentiality of the agent’s data

4. Ensuring integrity of the agent’s control flow

The migration of an agent from one host to another is called a migration step. A mi-
gration path is a sequence of multiple migration steps that identifies all the hosts, in
order, an agent has visited. In principle, the integrity of the migration path (item 1,
above) forms the basis for detecting malicious hosts and/or preventing them from do-
ing any harm. For example, a number of techniques [6, 22, 39, 43] have integrity of
agent migration paths as a premise, and can be used to detect tampering with the agent
(items 2 & 4). Solutions to protect an agent’s migration paths are discussed in more
detail at the end of this section (Section 5.5). Before that, some solutions to protect an
agent’s integrity, confidentiality, and control flow are briefly presented.

5.1 Trusted Hardware
A technique that in principle can offer the most protection is using trusted hardware
(Trusted Computing [49]). Trusted hardware, such as the Trusted Platform Module
(TPM), provides guarantees of the hardware’s behavior. A TPM is a piece of hardware
within a computer that cannot be tampered with. It can perform cryptographic func-
tions and store cryptographic keys securely. Software manufacturers can use a TPM to
guarantee users that their software running on a host has not been tampered with. A
TPM can create a hash of the hardware and software of a computer and check whether



anything has been modified. Agents can use this information to detect whether to trust
a host or not, depending on whether they trust the software manufacturer who created
the agent middleware running on the host.

Another use of a TPM is for an agent to let certain critical operations be performed
by a TPM. An agent sends any input encrypted to the TPM, the TPM then operates on
the data and sends the result back to the agent. The result is encrypted in such a way that
only the agent’s owner can decrypt it after the agent returns to its owner. Unfortunately,
both uses of the TPM require specialized hardware. Requiring all computers to have
specialized hardware restricts the use of it for agent systems in an open environment.
Therefore, the remainder of this section focuses on software-only techniques.

5.2 Protecting an Agent’s Integrity
An agent needs to protect both it’s agent code as well as any data it carries. As men-
tioned before, without trusted hardware, an agent cannot protect this data from being
modified by a malicious host. However, it is possible for an agent to detect, after a
migration from a potentially malicious host, whether that host has made any unwanted
modifications to the agent’s code and/or any data that the agent carried. The solution is
the use of digital signatures.

To protect an agent’s code, the agent carries a signature from the agent owner over a
hash of the agent’s code. After migration, an agent platform checks whether the agent
owner is authorized (trusted) to run agents and whether the signed hash in the agent
matches the actual hash of the agent’s code it received. If not, then the agent has been
modified and the agent platform can notify the agent’s owner and refuse to start the
agent. Since only the agent owner can generate this signature, a malicious host cannot
modify the agent’s code without being detected.

The data that an agent carries can be protected as follows. A hash is calculated
of each piece of data that needs to be protected. Then all these hashes are stored in a
table together with some meta-data on each piece of data, such as its location within
an agent. This table is then signed and stored within the agent. If a malicious host
modifies or removes a part of the protected data or the table, the signature will not
match and the modification will be detectable by the agent or the agent owner.

Unfortunately, an agent cannot carry its own private key to sign data, because a
malicious host would then also have access to it and be able to fake signatures. Con-
sequently, an agent cannot sign its own data. Instead, an agent owner or a trusted third
party should sign the table. The agent has to migrate to the agent owner’s host or to the
trusted third party’s host first to get the signature. Migration to a trusted host makes this
scheme a little cumbersome. If, however, the migration path of an agent can be securely
tracked (migration path integrity), other solutions become possible [6, 22, 39, 43].

5.3 Protecting an Agent’s Confidentiality
To protect a malicious host from reading confidential data that an agent carries, it is
sufficient to encrypt that data with the public key of the agent’s owner, which ensures
that only the agent’s owner can read the data after the agent has returned to the owner.
Encryption can be done by an agent itself on the (trusted) host where it has acquired



the data. Unfortunately, after encryption an agent itself does not have access to the data
either. If it needs access to encrypted data and it trusts the host it is on, it can set up a
secure connection to the agent’s owner and ask it to decrypt the data.

5.4 Protecting an Agent’s Control Flow
Unfortunately, protecting an agent’s control flow on a malicious host is virtually im-
possible without dedicated trusted hardware. Basically, an agent would need to control
(or at least monitor) the runtime environment of the host on which it runs, which is
impossible as the host controls it. For example, a malicious host could deny or limit
access to resources that an agent has previously negotiated for. If the agent does not
check for this, it would never notice the fraud. Even worse, even if an agent checks for
fraud, a really malicious host could change the control-flow of the agent to skip this
check.

The best an agent can do is to use the techniques described above to protect the
confidentiality and integrity of the data it carries, to at least detect whether the agent
has been tampered with. The agent can then can redo its operation again at a more
trusted host after migration.

5.5 Protecting an Agent’s Migration Path
One fundamental (and unsolvable) problem for agent migration is that a malicious host
can always delete an agent in its entirety. This can never be prevented. However, it is
possible to detect which host deleted an agent. The only thing that is needed for this
is the preservation of the integrity of the migration path of an agent. An agent owner
can then simply follow the migration path of an agent and conclude which host deleted
the agent. Of course for this to work, a malicious host should not be able to forge the
migration history of an agent. Once a malicious host is identified as such, the host
can be put on a black list, thereby preventing further malicious behavior of the host
in question. The main focus of this section is the detection of breaches of integrity in
migration paths of mobile agents.

The host on which an agent is initialized, is assumed to be trusted by the agent’s
owner. This host can be traced by all other hosts at any arbitrary moment in time.
Hosts are assumed to have full control over the agents they run. The consequence of
this assumption is that hosts are able to read and alter information stored inside agents.
Although agents can decide to only migrate to trusted hosts, that is, hosts that have a
valid (signed) certificate, a trust relationship does not give full guarantees with respect
to a host’s behavior and intentions.

A number of solutions exist to protect the integrity of an agent’s migration path. A
possible solution uses a centralized trusted third party (TTP) [15] to authorize and
keep track of migration paths of agents. The trusted third party can be physically lo-
cated elsewhere and does not have to be part of the agent system itself. However, all
users of an agent system must trust that the trusted third party is not malicious and can-
not be compromised. Secure communication channels (see Section 4) to the TTP and
digital signatures [25] (see also 5.2) are used to secure the migration protocol against



fraud. Unfortunately, malicious hosts can simply migrate an agent between them with-
out informing the TTP. Furthermore, a centralized TTP forms a single point of fail-
ure and can become a performance bottleneck for large-scale agent systems. Multiple
TTPs can be used to improve scalability. For example, in the home based approach,
each agent uses its own initial (trusted) host as its TTP. Alternatively, Roth [39] uses
co-operating agents that use each other as TTP.

A decentralized solution to secure the migration path of an agent is signature
chaining [45], which stores an agent’s migration path in an agent itself, together with
an agent’s code and data. Digital signatures are used to protect the migration path
against tampering by a malicious host. In this method, each host adds the next migra-
tion step to the migration path that was already stored in the agent and signs the entire
path, including the signatures of previous hosts in the migration paths. By signing the
entire migration path the signatures of all participating hosts are chained together. Each
new migration step adds another connected link to the signature chain. Unfortunately,
verifying long signature chains is computationally intensive, and a malicious host can
remove arbitrary cycles from a migration path if an agent (accidentally) visits the same
malicious host for a second time [45].

Another scalable solution that uses the notion of distributed trust to secure migra-
tion paths is described in [53]. In this solution, other hosts in the migration path autho-
rize and check each following migration step. Increasing the number of hosts required
to authorize a migration makes the migration protocol more resistant to cooperating
malicious hosts. Spreading trust over multiple hosts in an agent system clearly has
benefits in terms of scalability and it strengthens the security mechanism, as a ‘single
point of failure’ no longer exists. Orthogonally, a dedicated trust model that can distin-
guish the –relative– trustworthiness of hosts in multiple agent systems can be of much
additional value. Reputation and trust models [1] have been studied in the context of
agent systems by, for example, [36, 19].

6 Malicious Agents
The previous section discusses the malicious host problem. This section focuses on
the complementary problem: malicious agents. Just as agent owners want to protect
their agents against potentially malicious hosts, so do platform administrators want to
protect their hosts against potentially malicious migrating agents. Malicious agents
typically attempt to gain access to resources on a host they are not authorized to use.
Such access includes attempts to access private data of the host, private data of other
agents, or to use additional computational resources that have not been negotiated.
Fortunately, there are a number of techniques that a platform administrator can apply to
reduce the threat of malicious agents and control their access to a host’s resources. This
section discusses a few of these techniques and subsequently focuses on the subject on
how to configure and manage access to resources for agents.



6.1 Sandboxing Agents
Most solutions to securing hosts from malicious agents entail monitoring every action
that an agent attempts on a host. Whenever an agent makes a call to the middleware
API, it is intercepted by a security manager. The security manager checks the system
policy to determine if an action, such as migration and resource access, should be
allowed or denied. For example, a host could decide that it does not allow agents to
use remote web-services (i.e., not running on the local host). Every attempt to contact
a remote web-service will be blocked by the security manager.

Many agent platforms are Java-based [14], and in Java one of the primary solutions
towards securing mobile code is to execute any remote code in a protection domain or
sandbox. A sandbox limits the set of operations that the remote code may call. For
example, sandboxing typically restricts network access as well as access to the local
filesystem. Java provides agent system programmers the tools to define sandboxes by
using a security manager and/or custom class loaders. In Java the actual sandbox is
enforced and implemented by the underlying JVM, for interpreted scripting languages
such as Python and Safe-Tcl the sandbox is implemented by the interpreter. For C or
C++ (binary code) agents are ‘jailed’ [50].

Sandboxing and jailing are examples of solutions with which agents are run in con-
tained environments limiting the amount of damage they can cause to the systems on
which they run. An alternative solution is to only run agents of trusted owners. Whom
to trust is up to the platform administrator. In this solution, agents are only trusted
if they are signed by a reputable software manufacturer, whom the user trusts not to
provide malicious agents. The simplicity of this scheme is also its weakness: the se-
curity of the system lies in the belief that the signer is trustworthy. The weakness of
this system has already been shown as digital signing certificates have been issued to
people masquerading as a representative of a well known software maker [12]. Fur-
thermore, small and open source software makers may not have the financial capability
to purchase such signing certificates. Of course, digital signatures can be combined
with sandboxing to create a more robust security solution.

Finally, a more elaborate security approach is the use of proof-carrying code [30]
(applied to the mobile agent paradigm described in [31]). Agents carry a machine-
verifiable proof with them that specifies their expected and acceptable behavior. Each
host is equipped with a theorem prover to ensure that an agent’s code indeed adheres
to its specification. Unfortunately, constructing the proof is very labor intensive [21],
which makes this approach less practical.

Sandboxes and security managers restrict an agent’s actions. However, a security
manager first needs to know when to allow or deny an agent’s request to access a
resource: access control. In a flexible environment, principals may first want to nego-
tiate about which resources they need, to what extent, and at what price. The outcome
of this resource negotiation is input to the security manager that monitors and autho-
rizes access to resources as negotiated. For example, the WS-Agreement standard [3]
which provides a negotiation protocol for the domain of web services can be used.
Mobach [28] has applied and extended this standard in the field of distributed agent
systems.

Specifying security permissions can be an elaborate job, prone to mistakes. The



remainder of this section discusses how the combination of roles and sets of predefined
policies simplify this task. Security policies allow users of agent systems to manage the
security features of the multi-agent system of their choice. Developers of agent systems
have the opportunity to ship a number of security policies with their software. For
example, an effective default policy is one that will not prevent users from performing
vital tasks, but will protect the host against some of the most common security issues.
In contrast, ‘high security’ policies should be used in security critical environments.
Such policies are very restrictive. Below a security policy framework is discussed and
illustrated within AgentScape [20].

6.2 Resource Access Control
Once the basic security features, such as an agent naming scheme and authentication
(see Section 3), are in place, the next requirement is an authorization mechanism. Con-
ceptually, an authorization mechanism needs to specify who is allowed to do what and
to what extent. There are a number of principals involved in any agent platform. For
example, principals in AgentScape are locations, world administrators, resources and
their administrators, and agents and their owners. Similar principals can be identified in
any other agent platform. In any agent platform agents can perform a number of basic
actions to achieve their goals, such as communication, migration, access to resources,
etc. Controlling which principal can perform which action is a structure that can be
readily managed using a Role Based Access Control (RBAC) [44, 54] mechanism.

6.3 Roles, Users, and Permissions
RBAC is an access control architecture that models roles, users and permissions. RBAC
is designed to reflect real-world relations between users and permissions. Each role
is associated with a set of permissions corresponding to logical tasks that users can
perform. Users are assigned one or more roles. The advantage of this setup is that
changing the permissions of a whole group of users with a specific role can be easily
done by simply changing the permissions of the corresponding role.

Defining roles, users and permissions can be straightforward. First a number of
permissions are defined and assigned to roles. Users are then associated with these
roles. Table 1 shows some example (Role, Permission) pairs, denoting the capabilities
of each role. Note that each role can have multiple permissions. Table 2 assigns roles
to a set of users. These users are shown as textual names, but would in practice be
represented by a unique identifier.

Role Permission to perform action
BasicAgent Migrate, Execute
TrustedAgent Migrate, Execute, AccessRes
AgentOwner Inject, GetResult
ResourceAdmin AccessRes, ChangePerms, GetLogs

Table 1: RBAC Example Role Permission Table



Role User
BasicAgent SimpleAgent1, SimpleAgent2
TrustedAgent ClaireTradingAgent, DaveStockAgent
DatabaseAccess Alice, Claire
ResourceAdmin Trent, Steve

Table 2: RBAC Example Role User Table

Agent owners form the base of the trust mechanism. They are ultimately responsible for
the actions of their agents. Therefore, by default, agents hold the permissions granted to
their owners, but these permissions can be further restricted when appropriate. Access
to resources is explicitly specified in an RBAC policy.

The RBAC system can be dynamically updated, that is, roles can be changed, users
can be added or removed from roles, and permissions can be assigned and removed
from roles. Determining, specifying, and managing roles, users, and permissions is
the responsibility of an administrator of each host. Part of this management can be
delegated to (privileged) users to keep the task manageable. For example, a database
administrator can be given the right to manage permissions to databases for which he
is responsible. Agent owners can manage the rights of their own agent. Note that an
agent owner cannot give its agents more rights than he himself has been given by a
platform’s administrator.

In an open system, every agent platform is autonomous. Therefore, each host can
have its own RBAC policy. In addition, if multiple hosts cooperate and one single ad-
ministrative domain (called a location in AgentScape terminology) each administrator
of a host can define different (e.g., stricter) restrictions for its resources than a loca-
tion administrator and vice versa. Both policies are enforced together; actions are only
permitted if both policies agree.

6.4 Security Manager
To enforce resource access control, every action of an agent must first be authorized
by an RBAC system before the action can be executed. Whenever an agent attempts
to perform a security relevant action, a Security Manager checks whether the agent is
authorized to perform this action. This check is a two-step process. First, the Security
Manager determines the GUID of the agent and determines the role, or roles, of which
the GUID is a member. Second, the Security Manager determines if one or more of
these roles is authorized to perform the requested action.

It is worthwhile to note that not only a platform’s administrator, but also an agent
owner needs to trust the security manager. After an agent owner has negotiated for
resources and possibly paid for access, an agent owner expects the security manager to
grant access as negotiated. Similar to monitoring of Service Level Agreements (SLA) a
trusted third party module can be used to monitor and log the communication between
client (agent) and service provider (host) [37].



6.5 Parameterization of Permissions
A selection of the basic security relevant actions used in AgentScape is shown in Ta-
ble 3. In most agent systems similar actions can be identified. These actions reflect
the basic abilities of agents. The permissions for these actions can be extended with
parameters. Parameters are used to further refine the granularity of permissions. For
example, negotiation can be restricted to specific types of resources. Parameters are
defined in parentheses. A special parameter, ‘*’, is supported to allow all types of
an action to be permitted by a role. This notation is used to avoid having to explicitly
specify every type of resource and every location when wishing to grant access to them.
Permissions are positive, that is, if access to a resource is not explicitly granted, access
is denied.

Action Principal Description
Migrate Agent Migrate from one Location to another.
Inject Owner Launch an Agent in a Location.
AccessRes Agent Access a resource provided by a location.
Negotiate Agent Negotiate access to a remote location.
Lookup Agent Access yellow or white pages lookup service.
SendMsg Location/Agent Send a message to a remote location.
RecvMsg Location/Agent Receive a message from a remote location.

Table 3: Common Security Relevant Actions

In most cases, locations and hosts typically utilize generic policies for all agents. That
is, most locations and hosts are not expected to specifically restrict access to resources,
unless these resources are of specific importance. For example, most hosts will allow
all agents access to CPU and memory resources, but access to special databases are
more carefully controlled.

Parameterization simplifies expressing permissions for roles, and also allows more
fine-grained access for system resources to be defined. This can be used, for example,
to define policies that limit the locations to which agents may migrate. To illustrate
parameterization consider the Role/Permission table shown in Table 4. In this table,
normal agents (BasicAgent) are allowed to execute and access CPU and Memory re-
sources. Only trusted agents, that is, agents with the role TrustedAgent, are authorized
to access the price database.

Role Permission
BasicAgent Migrate(*), Execute, AccessRes(CPU,Memory)
TrustedAgent Migrate(*), Execute, AccessRes(CPU,Memory,PriceDB)

Table 4: Database Resource Role-Permission Table



6.6 Agent Injection
RBAC requires all users (agents, humans, etc.) to be associated with one or more roles.
New human users are usually entered into an RBAC system by a location’s administra-
tor. However, new agents injected by human users can be automatically added by an
agent platform in an RBAC system with the corresponding permissions as described
by an agent platform’s administrator. The agent injection protocol in AgentScape is as
follows. When a principal wishes to inject an agent into an AgentScape location, the
principal first contacts the location and they perform a two-way authentication. Once
authenticated, a location will accept agents injected into that location by a specific
principal if, and only if, the principal is authorized to perform injections.

Once an agent is injected into a location, the location assigns a GUID to the agent
instance. This GUID is also automatically entered as a new user into the Role-User
table of both the location and the host that is going to run the agent, and is assigned
to, at most, the same roles as the owner. Owner roles are defined by each location
individually. In addition, default roles can be used for unknown agents and owners. To
limit the growth of a Role-User table, an agent’s entry can be removed as soon as the
agent finishes or successfully migrates to another location. After successful migration,
the GUID of the agent will be entered into the Role-User table of the receiving location
and host. If owners are removed from a role, any agent belonging to that owner loses
that role.

6.7 Security Policies
While security can be a major concern for resource and location administrators, it is
not always the case that these principals are either particularly interested, or trained to,
define their own security policies. For this reason, it is advisable to have a set of pre-
defined default policies. These predefined policies range from simple, non-restrictive
policies, used for agent systems deployed in a well known environment, to stronger,
restrictive policies, where agent systems operate in a more hostile environment. These
two extremes are described in the context of the following two case studies: a closed
world and a hostile world.

In a simple closed world environment, locations are controlled by well known enti-
ties and are all trusted. Communication between locations is cryptographically secured
and each location is known and trusted by every other location. The major threat to
the middleware is that of malicious agents. Agent owners must be authenticated. Once
authenticated, agents are authorized to perform any and all actions. Therefore, the au-
thorization mechanism is not used for access control, but is instead used for auditing
purposes: whenever an agent performs a security relevant action, it is logged for possi-
ble later examination by the location administrator. While a simple system is common
in small, closed environments, the provision of services on the web, with the associ-
ated access of these services by software agents demonstrates that such an environment
cannot be assumed.

In a hostile environment locations are controlled by entities that are not always
known by every principal. Agents are authenticated by their initial location as before,
but the authorization mechanism is now used to enforce location-specific restrictions.



The security manager monitors usage of specified resources and ensures that all ac-
cesses are restricted by the negotiated limits. Any breaches of these limits are logged
and execution of the agent responsible is immediately suspended. Migration is only
authorized between the original ‘home’ host–the host where the agent started–and re-
mote hosts. Therefore, migration from one remote host to another forces an agent to
first return to the home host. This is enforced to prevent malicious hosts attempting to
inject or read data developed from a prior migration. For example, the result of a price
check from a prior website should not be available when performing a price check at a
competitor’s site.

Within a hostile environment, not only locations and hosts may want to constrain
the actions of agents, but also agent owners may want to restrict the actions their agents
are allowed to perform on their behalf. These actions include the ability to negotiate,
migrate, inject, access resources, purchase items on the web, etc.

In summary, the security architecture outlined in this section and illustrated within
the AgentScape agent system provides a flexible means to define and manage agent
access to specific functionality. Flexibility is provided in two areas: firstly, hosts and
locations have the ability to control access to resources that they control. Secondly,
owners can constrain their agents from performing actions that, while they are autho-
rized by the locations and hosts, are not desirable to the owner. For more information
see [35].

7 Secure Lookup Service
Every distributed agent system has some way of naming agents, and a way of mapping
agent names to their location. Finding the location of an agent is useful, for example,
for co-locating agents, that is, migrating agents to run on the same host to improve per-
formance by reducing communication costs. Sometimes the names of agents already
contain a reference to their location (location-dependent names), in which case, resolv-
ing the name to a location becomes trivial. However, with location-dependent names,
agents do not have stable names as after a migration their names will have changed.
Such agents are more difficult to track for other agents. With location-independent
names, the names remain stable after migration, but the agent system needs a lookup
service to map an agent’s name to its current location.

A lookup service is a generic name for a global service that keeps track of where
each agent is located and how to communicate with it. Another name often used is
white pages. To prevent agents and services from impersonating other agents and
services, the information in a lookup service must be trustworthy. However, in an open
environment, where anyone can join the agent community, guarding the information in
a lookup service is a challenge.

Scalable location services are essential in distributed systems and, in particular, for
multi-agent systems. Domain Name System (DNS) is a very successful realization of
a location service that resolves symbolic names to contact addresses (IP addresses).
DNSSEC (Secure DNS) has been designed to support authentication preventing spoof-
ing and man-in-the-middle attacks [4]. Both DNS and DNSSEC, however, are not
designed to deal with highly dynamic entities such as mobile agents. The dynamic na-



ture of mobile agents in Internet-scale, open network systems requires a different type
of approach for registering, deregistering, and retrieving location information. Scala-
bility and integrity are of utmost importance as (up-to-date) agent location information
is a prerequisite of successful agent mobility.

This section presents an approach for a scalable and secure location service.

7.1 Information in the Lookup Service
To make a lookup service secure, the service should store not only agent-ids and their
current location, but also provide ways for its users to determine the validity (i.e.,
trustworthiness) of that information. In an open environment, users of a lookup service
know that a lookup service may be compromised and may contain false information.
One way to solve this problem is to have information published in the lookup service
be signed by its publisher. The validity of the information returned by a lookup server
depends on the level of trust placed in the signing publisher. Signing is done with
public-key cryptography. This system requires a public-key infrastructure (PKI). The
PKI ensures that public-keys are published in a secure and authenticated manner.

It is possible to integrate (a simple version of) a PKI and the lookup service. In this
case, the lookup service holds two types of information: Agent-Location information
and Certificates. The first piece of information is simply an (Agent-id, Location) pair,
denoting the current location of a specific agent. This information is signed by the
platform that currently holds the agent. Certificates are signed (location, public-key)
pairs denoting that the specified public key is the public key of the platform running on
that specified location. Note that it is possible for platforms to sign their own certifi-
cates: self-signed certificates. However, the trustworthiness of self-signed certificates
is questionable in an open, hostile environment.

Each certificate is signed by a principal, which is either a root certificate authority
or another platform. By allowing platforms to sign certificates containing public keys
of other platforms a web of trust [13] can be build. Platforms should only sign a
certificate for another platform if it trusts that the other platform is not malicious. Users
of the lookup service can follow the chain of signatures in the certificates until they find
a signature of a platform that they trust. This principle assumes that trust is transitive,
that is, you trust everyone that is trusted by someone you trust. This principle may be
too naive for some and they can restrict themselves to only trust information that is
signed by someone they trust directly.

7.2 Using the Secure Lookup Service
This section describes how a secure lookup service is used in an agent platform, such as
AgentScape. Agents are identified by a GUID and locations are identified by their name
(locationname). Each location is responsible for publishing the location information for
all of the agents it currently hosts. Furthermore, when a location starts, it first publishes
its public-key via a certificate so others can verify the signature of all information
published by this platform. This certificate is signed by a (root) certificate authority.
Note that it is assumed that the public keys of root certificate authorities are well-



known and that everyone has obtained a copy of them in a secure manner. For example,
platform administrators could exchange certificates in person.

In addition, the started platform can sign certificates for other platforms, indicating
that it trusts and ‘endorses’ the information signed by those platforms. Which platforms
to trust is usually determined by a platform’s administrator and is typically stored in a
list by the agent platform.

Below, the main functionality of a location service is briefly discussed.

Registering an Agent. When an agent is injected into an agent system its location
is registered by the lookup service. First, the hosting agent platform creates a (agent
GUID, locationname) pair. This information is signed by the hosting platform and
published in the lookup service for others to find.

Deregistering an Agent. Deregistering is done by explicitly publishing that the agent
does not have a current location anymore, indicating that the agent no longer exists. To
prevent the information in a lookup service from growing too much, information in the
lookup service could have an expiration time, that is, a lookup service automatically
removes expired information automatically, unless the information is republished peri-
odically. In this case, an alternative solution for deregistering an agent is to simply let
an agent’s location information expire from the lookup service, that is, to not repub-
lish the information for that agent. Note, that until the information expires, the lookup
service will errantly report an agent’s location, but this is not severe, as any attempt to
contact the agent will simply fail with an error that the agent does not exist anymore.
Choosing smaller expire times decreases this problem, but requires valid information
to be republished more often.

Lookup of an Agent’s Location. Agent lookup is done by searching the lookup
service for all information pairs concerning an agent’s GUID.

• If no information is found an agent does not exist (anymore).

• If multiple pairs are found, the platform filters the pairs by only looking at in-
formation signed by known and trusted platforms. The most recently published
information indicates the current location of the agent. The recentness of infor-
mation can be determined by including version numbers (e.g., timestamps) with
each published piece of information.

A less strict trust-model would allow a recursive search for certificates of signing plat-
forms until a certificate is found that is signed by a trusted platform.

Agent Migration. Agent migration is the most complicated scenario: care must be
taken to ensure the agent is not accidentally ‘dropped’ or duplicated, for example, when
one of the locations crashes or network connectivity is lost. Another important issue is
to correctly update an agent’s location in the lookup service.

The basic agent migration procedure is as follows, given an agent A, and locations
X and Y.



• Agent A, running on location X, indicates its wish to migrate to location Y.

• Location X contacts location Y and transfers agent A.

• Location Y acknowledges to location X that agent A has been received.

• Location X stops republishing location information for agent A, but maintains a
forwarding pointer for agent A to location Y in case other agents try to contact
agent A on the old location.

• Location Y publishes that agent A is now located at location Y. As this piece of
information has a higher version number than the previous information published
by location X, this marks location Y as the current location of agent A.

7.3 Scalability
The previous section focused on the problem that the information in a lookup ser-
vice must be authenticated and its integrity guaranteed. Another problem to tackle is
scalability. In a distributed environment with potentially many hundreds of thousands
of agents (or more) and many migrations, the lookup service can quickly become a
performance bottleneck, especially if a centralized lookup service is used. One tech-
nique for scalability is Peer-to-Peer technology. For example, a distributed hash table
(DHT) [38, 47, 42] is a decentralized lookup datastructure that is similar to a hashtable
and aimed at performance.

A DHT stores (key, value) pairs and allows quick retrieval of the value associated
with a particular key. The data can be spread over the participating nodes, but can also
be replicated to increase lookup performance and/or to make the system more fault
tolerant. A DHT is a self-managed datastructure. The nodes themselves are responsible
for balancing the load and maintaining the data. Nodes can dynamically join and leave
the DHT without disrupting the service. These properties make a DHT very scalable,
and therefore, make it a good candidate for implementing a distributed lookup service.

In a lookup service based on a DHT, the (key, value) pairs stored in the DHT are
the signed (agent-id, location) information pairs. An agent’s location can be quickly
retrieved via the DHT. Furthermore, each platform’s certificate is stored as a (location,
certificate) pair, making verifying signatures straightforward. Note that certificates are
relatively static which means that they are easily cached at each host, making lookups
in the lookup service necessary only for unknown public-keys, or when the cached
copy is too old. Caching increases the performance of the distributed lookup service
even further. Experiments in AgentScape with a secure lookup service based on a
DHT, as described in this section, have shown promising results with respect to perfor-
mance [33].

8 Agent Systems Overview
Many dozens of agent systems have been designed and developed over the last ten years
or so. Some of them have reached quite a mature state and have an active community



supporting and using the agent system. This section briefly introduces and discusses
a few representative agent systems: AgentScape [20], Ajanta [23], SeMoA [41], and
Jade [5]. These agent systems are chosen because they are well-known and/or have a
focus on security aspects. Each of these systems provides centralized access control.
In contrast, the security solutions presented in the previous sections all emphasize a
distributed solution.

The discussion of each agent system focuses on their security architecture and the
different approaches taken by these agent systems to deal with individual security re-
quirements. An extensive and detailed discussion of each agent system is out of the
scope of this chapter.

8.1 AgentScape
AgentScape [20] is a middleware layer that supports open, distributed, large-scale agent
systems. It was designed especially to be used in a large scale, distributed, heteroge-
neous, open environment. Its design provides minimal but sufficient support for agent
applications within an open environment, and can be extended to incorporate new func-
tionality or adopt (new) standards into the platform. AgentScape is written in Java and
therefore runs on multiple operating systems. It also supports agents written in different
programming languages, such as Java, Jason [7], and C.

Within AgentScape, agents are active entities that reside within locations, consist-
ing of multiple hosts, and services are external software systems accessed by agents.
Each host runs an instance of the AgentScape middleware. AgentScape uses a Pub-
lic Key Infrastructure (PKI). Agent owners, locations and hosts have public key pairs.
This ensures that locations and hosts can mutually authenticate and set up secure com-
munication channels, using SSL.

Furthermore, every agent has a GUID that is assigned by the agent platform. This
GUID is an identifying reference used by the middleware to address an agent and per-
form operations, such as deliver messages, stop and/or pause, migrate or even kill
and/or remove the agent. A GUID is private to the middleware. Externally, agents
use handles. An agent can have as many handles as it requires. Handles can be pub-
lished publicly, making access to the agents for others possible. An agent’s handles are
uniquely linked to its GUID, but the agent’s GUID cannot be deduced from its handles,
which makes them suitable as pseudonyms (see Section 3.1).

8.2 Ajanta
Ajanta [24] is a mobile-agent system based on the Java programming language. Se-
curity and robustness have been primary concerns in Ajanta’s development. Ajanta
platforms can guard themselves against malicious agents. An Ajanta system consists
of several AgentServers running on hosts. Each agent server creates a confined ex-
ecution environment for visiting agents and provides them controlled access to local
resources. Agents can migrate to other agent servers, communicate with each other,
query their environment, etc. The implementation of Ajanta’s security architecture is
based on proxies and Java’s security model to restrict, control, and (remotely) monitor
running agents. Agents do not have direct references to a host’s resources. Instead they



have to go through proxies, which check whether the agent has the authorization to
access that resource. Furthermore, agent owners can use encryption to secure parts of
the agent’s data, thereby guaranteeing the data’s confidentiality and integrity.

8.3 SeMoA
Secure Mobile Agents (SeMoA) [40] is an extensible Agent platform, written in Java,
designed to counter certain protocol attacks and malicious agents. SeMoA has a RBAC-
based access control architecture. SeMoA is also designed to load agents in a secure
manner, as each agent is loaded in a separate class loader. This enforces separation
between agents, and prevents agents interfering with other code executing within a
location. Execution of agents is managed explicitly, with access to features such as
threads and resources mediated upon.

8.4 Jade with Jade-S and S-Agent
The Java Agent Development Platform (JADE) [5] is a popular FIPA-compliant agent
middleware platform. There are a number of extensions to JADE that provide a security
architecture to the system, in particular S-Agent [16] and the JADE-S plugin [34].

S-Agent extends JADE with the intention of providing data confidentiality and ad-
dressing the malicious host problem, described in Section 5. S-Agent provides two
solutions to the malicious host problem without the need for secure hardware. These
solutions are implementations of two different security protocols, the ACCK proto-
col [2] and the TX protocol [48]. ACCK uses a trusted third party to ensure that a host
does not act maliciously. The TX protocol uses a threshold scheme, where two or more
agents must agree that an action is authorized before that action will be allowed. This
eliminates the need for a trusted third party. However, it can require more protocol
interactions, depending on the number of parties required for the threshold to be met.

JADE-S is an extension to JADE providing decentralized access control. It uses the
SPKI [11] trust management system. Trust management systems have a number of ad-
vantages compared to the traditional identity-based systems created using X.509. Poli-
cies and certificates are created and maintained separately from the application. The
terminology used within the policies and/or credentials is application defined. They are
represented in an application specific fashion, allowing the application designer to de-
cide what characteristics are required. Agents are explicitly granted permissions, and
only agents trusted by the location are authorized to execute code at that location.

9 Summary
Security in multi-agent systems is a major concern, particularly in multi-agent systems
deployed in a large-scale, distributed, and open environment. Finding a balance be-
tween restricting access to resources and allowing enough openness to let the whole
system function efficiently and effectively is the challenge.

This chapter has identified threats to the two main stakeholders in an agent system:
the agent owner and the platform administrator. The security requirements looked at



included identity management, secure communication, and maintaining confidentiality,
integrity, and availability for the stakeholders. These requirements need to be fulfilled
for any secure agent system. Each security requirement has been discussed in detail
and solutions have been illustrated in the AgentScape agent platform.

Acknowledgments
This work is a result of support provided by the NLnet Foundation (http://www.
nlnet.nl). The authors wish to thank Benno Overeinder, David Mobach, Thomas
Quillinan, Kassidy Clark, Reinier Timmer, and Reinout van Schouwen for their contri-
butions.

References
[1] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Proceedings of the

1997 workshop on New security paradigms, pages 48–60. ACM Press, 1998.

[2] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security
for mobile code. In IEEE Symposium on Security and Privacy, pages 2–11, 2001.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web services agree-
ment negotiation specification (WS-AgreementNegotiation) (draft).
https://forge.gridforum.org/projects/graap-wg, 2004.

[4] D. Atkins and R. Austein. Threat analysis of the domain name system. IETF RFC
3833, Aug. 2004.

[5] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A FIPA-compliant agent frame-
work. Proceedings of PAAM, 99:97–108, 1999.

[6] E. Bierman and E. Cloete. Classification of malicious host threats in mobile
agent computing. In Proceedings of the 2002 annual research conference of the
South African institute of computer scientists and information technologists on
Enablement through technology, pages 141–148. RSA, 2002.

[7] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-Agent Sys-
tems in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley
& Sons, 2007.

[8] P. Braun and W. Rossak. Mobile Agents: Basic Concepts, Mobility Models, and
the Tracy Toolkit. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[9] S. Clauß and M. Köhntopp. Identity management and its support of multilateral
security. Computer Networks, 37(2):205–219, 2001.



[10] A. Csetenyi. Electronic government: perspectives from e-commerce. In Pro-
ceedings of the 11th International Workshop on Database and Expert Systems
Applications, pages 6–8. IEEE Computer Society Washington, DC, USA, 2000.

[11] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory. Request for Comment (RFC) 2693, Internet Engineering Task
Force, September 1999.

[12] B. Fonseca. VeriSign issues false Microsoft digital certificates.
http://www.infoworld.com/articles/hn/xml/01/03/22/
010322hnmicroversign.html, March 2001. Infoworld.

[13] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1996.

[14] L. Gong. Inside JavaTM2 Platform Security. The JavaTMSeries. Addison Wesley,
June 1999. ISBN: 0-201-31000-7.

[15] H. Guan, H. Zhang, P. Chen, and Y. Zhou. Integration and Innovation Orient to
E-Society Volume 1, volume 251 of IFIP International Federation for Information
Processing, chapter Mobile Agents Integrity Research, pages 194–201. Springer,
2008.

[16] V. Gunupudi and S. R. Tate. SAgent: A Security Framework for JADE. In
Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS06), 2006.

[17] R. H. Guttman, A. G. Moukas, and P. Maes. Agent-mediated electronic com-
merce: a survey. The Knowledge Engineering Review, 13(02):147–159, 2001.

[18] M. He, N. R. Jennings, and H. F. Leung. On agent-mediated electronic commerce.
IEEE Transactions on Knowledge and Data Engineering, 15(4):985–1003, 2003.

[19] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing an integrated trust
and reputation model for open multi-agent systems. In Proceedings of the 7th
International Workshop on Trust in Agent Societies, pages 65–74, 2004.

[20] IIDS. AgentScape Agent Middleware. http://www.agentscape.org.

[21] B. Jacobs, M. Oostdijk, and M. Warnier. Source Code Verification of a Secure
Payment Applet. Journal of Logic and Algebraic Programming, 58(1-2):107–
120, 2004.

[22] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation results of free-
roaming agents. Personal Technologies, 2(2):92–99, 1998.

[23] N. M. Karnik and A. R. Tripathi. Agent Server Architecture for the Ajanta
Mobile-Agent System. In Proceedings of the 1998 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’98),
pages 66–73, July 1998.



[24] N. M. Karnik and A. R. Tripathi. Design Issues in Mobile Agent Programming
Systems. IEEE Concurrency, 6(6):52–61, July–September 1998.

[25] C. Kaufman, R. Perlman, and M. Speciner. Network Security, PRIVATE Commu-
nication in a PUBLIC World. Prentice Hall, 2nd edition, 2002.

[26] S. Kent and R. Atkinson. Security architecture for the internet protocol. IETF
RFC 2401, Nov. 1998.

[27] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton, FL, 1997.

[28] D. G. A. Mobach. Agent-Based Mediated Service Negotiation. PhD thesis,
Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The
Netherlands, May 2007.

[29] A. Moreno and J. L. Nealon. Applications of Software Agent Technology in the
Health Care Domain. Birkhauser, 2003.

[30] G. C. Necula and P. Lee. Proof-carrying code. In Proceedings of the 24th Sym-
posium on Principals of Programming (POPL). ACM, 1997.

[31] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. Spe-
cial Issue on Mobile Agent Security, pages 61–91, 1997.

[32] Netscape Inc. Secure sockets layer website. http://www.mozilla.org/
projects/security/pki/nss/ssl/draft302.txt.

[33] B. J. Overeinder, M. A. Oey, R. J. Timmer, R. van Schouwen, E. Rozendaal, and
F. M. T. Brazier. Design of a secure and decentralized location service for agent
platforms. In Proceedings of the Sixth International Workshop on Agents and
Peer-to-Peer Computing (AP2PC 2007), May 2007.

[34] A. Poggi, M. Tomaiuolo, and G. Vitaglione. Security and trust in agent-oriented
middleware. In R. Meersman and Z. Tari, editors, OTM Workshops 2003, number
2889 in LNCS, pages 989–1003. Springer-Verlag, 2003.

[35] T. B. Quillinan, M. Warnier, M. A. Oey, R. J. Timmer, and F. M. T. Brazier.
Enforcing security in the agentscape middleware. In Proceedings of the 1st Inter-
national Workshop on Middleware Security (MidSec). ACM, December 2008.

[36] S. D. Ramchurn, C. Sierra, L. Godo, and N. R. Jennings. A computational trust
model for multi-agent interactions based on confidence and reputation. In Pro-
ceedings of the 6th International Workshop of Deception, Fraud and Trust in
Agent Societies, pages 69–75, 2003.

[37] O. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier. Monitoring and
reputation mechanisms for service level agreements. In Proceedings of the 5th
International Workshop on Grid Economics and Business Models (GenCon), Las
Palmas, Gran Canaria, Spain., August 2008. Springer Verlag.



[38] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable
content-addressable network. In SIGCOMM, pages 161–172, 2001.

[39] V. Roth. Mutual protection of co-operating agents. In J. Vitek and C. D. Jensen,
editors, Secure Internet programming: security issues for mobile and distributed
objects, volume 1603 of LNCS, pages 275–285. Springer-Verlag, 2001.

[40] V. Roth and M. Jalali. Concepts and architecture of a security-centric mobile
agent server. In Proc. Fifth International Symposium on Autonomous Decentral-
ized Systems (ISADS 2001), pages 435–442. IEEE Computer Society, 2001.

[41] V. Roth and M. Jalali-Sohi. Concepts and architecture of a security-centric mobile
agent server. In Proceedings of the Fifth International Symposium on Autonomous
Decentralized Systems, pages 435–442, Dallas, Texas, U.S.A., March 2001.

[42] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Middleware 2001, volume 2218
of Lecture Notes in Computer Science, pages 329–350. Springer-Verlag, Berlin,
Germany, 2001.

[43] T. Sander and C. F. Tschudin. Protecting Mobile Agents Against Malicious Hosts.
Mobile Agents and Security, 60, 1998.

[44] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, February 1996.

[45] A. Saxena and B. Soh. Authenticating mobile agent platforms using signature
chaining without trusted third parties. In Proceedings of the 2005 IEEE Interna-
tional Conference on e-Technology, e-Commerce and e-Service, (EEE’05)., pages
282–285, 2005.

[46] W. Stallings. Cryptography and network security: principles and practice. Pren-
tice Hall, 2006.

[47] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions on Networking, 11(1):17–32, Feb. 2003.

[48] S. R. Tate and K. Xu. Mobile agent security through multi-agent cryptographic
protocols. In Proceedings of the 4th International Conference on Internet Com-
puting, pages 462–468, Las Vegas, NV., 2003.

[49] Trusted Computing Group. TPM main specification. http:
//www.trustedcomputinggroup.org/resources/tpm_main_
specification, July 2007.

[50] G. van ’t Noordende, A. Balogh, R. F. H. Hofman, F. M. T. Brazier, and A. S.
Tanenbaum. A secure jailing system for confining untrusted applications. In
Proc. 2nd International Conference on Security and Cryptography (SECRYPT),
pages 414–423, July 2007.



[51] M. Warnier and F. M. T. Brazier. Organized anonymous agents. In Proceedings
of The Third International Symposium on Information Assurance and Security
(IAS’07). IEEE, August 2007.

[52] M. Warnier, F. M. T. Brazier, and A. Oskamp. Security of distributed digital
criminal dossiers. Journal of Software (Academy Publisher), 3(3), March 2008.

[53] M. Warnier, M. A. Oey, R. J. Timmer, B. J. Overeinder, and F. M. T. Brazier.
Enforcing integrity of agent migration paths by distribution of trust. Int. J. of
Intelligent Information and Database Systems, 3(4), 2009.

[54] X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible delegation model in RBAC.
In Proceedings of the 7th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT 2003), Como, Italy, 2003.


