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Abstract Agent mobility is the ability of an agent to migrate from
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tively straightforward, in practice security of mobile agents is a chal-
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environments. This paper discusses the security issues involved and
proposes protocols for secure agent migration. AgentScape, an agent
platform for mobile agents, is used to illustrate the feasibility of the
implementation of these protocols.
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1 Introduction

The agent paradigm supports the design of autonomous distributed networked
systems in service-oriented environments. Agents are autonomous, pro-active, com-
municative, and goal-directed, often capable of learning and sometimes equipped
with the ability to migrate from one location to another. Agents equipped with
the ability to migrate, so-called mobile agents, traverse the network to access the
services and resources they need to achieve the goals they pursue. The potential of
mobile agent technology in sectors such as E-Commerce (8; 9), E-Health (18) and
E-Governance (4; 33), is well recognized. In these sectors, in particular, privacy
and copyright, are of utmost importance. Data access control is mandatory: by
moving agents to the location at which data is stored, data access and processing
can be done locally and controlled.

Mobility and autonomy, however, also provide new challenges, especially with
respect to security issues. Preservation of agents’ integrity and their data—data
acquired whilst traversing a network—is the challenge addressed in this paper.
This challenge is of explicit importance in open environments: environments that
are not under the control of agents’ owners. The hosts on which an agent resides
may be malicious, and temporarily have complete control of the agent’s runtime
environment.

Complementary is preservation of the integrity of agent platforms, i.e., agent
middleware: protecting platforms from malicious agents, i.e., agents that attack
the host on which they reside. This is not the focus of this paper, as solutions
to this problem exist. Sandboxing (as in Java) or jailing (30), are examples of
solutions with which agents are run in contained environments limiting the amount
of damage they can cause to the systems on which they run. A more fine-grained,
though less practical, approach is the use of proof carrying code (19) (applied to
the mobile agent paradigm described in (20)). Agents carry a ‘proof’ with them
that specifies their expected and acceptable behaviour. Each host is equipped with
a theorem prover to ensure that an agent’s code indeed adheres to its specification.
This approach is very labour intensive (12). Protecting agent platforms against
malicious hosts is not further discussed in this paper.

The remainder of this paper is organized as follows: the next section introduces
the AgentScape platform, the platform used throughout the paper to illustrate
the technological issues concerning secure agent migration.a Section 3 explains

aNote that a new migration protocol recently has been introduced (5) that aims to standardize
the migration protocol further. See (6) for an implementation of this protocol in AgentScape. In
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the basics of agent migration. It also discusses the simplest security protection
mechanism: transport layer security. An overview of more extended mobile agent
security approaches is given in Section 4, with the main focus on the protection of
the integrity of an agents’ migration path. Section 5 introduces a new approach to
this problem that is both more scalable and more secure than existing approaches.
The paper ends with a discussion and conclusions.

2 AgentScape

AgentScape is an agent platform that provides the middleware infrastructure
needed to support mobility, security, fault tolerance, distributed resource and ser-
vice management, and services access, to agent applications.

Within AgentScape, agents are active entities that reside within locations, and
services are external software systems accessed by agents hosted by the AgentScape
middleware (see Figure 1). Agents in AgentScape can communicate with other
agents and can access services. Agents may migrate from one location to another.
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Figure 1 Conceptual model of the AgentScape middleware environment.

All operations of agents are modulo authorization and security precautions. For
example, an agent may be required to have the appropriate credentials (ownership,
authorization, access to resources, and so on) to access a specific service.

The leading principle in the design of the AgentScape middleware (22) has been
to develop a minimal but sufficient open agent platform that can be extended to
incorporate new functionality or adopt (new) standards into the platform. This
design principle has resulted in a multi-layered architecture with (1) a small mid-
dleware kernel, called the AgentScape Operating System (AOS) kernel (32, in this
issue), that implements basic mechanisms and (2) high-level middleware services
that implement agent platform specific functionality and policies (see Figure 2).

AgentScape’s middleware services implement agent specific functionality. The
current set of middleware services include:

• Location Manager - Every location has a Location Manager, which runs
on one of the hosts within that location and manages the location’s hosts.
Locations typically represent a same single administrative domain.

• Host Manager - Each host (typically, one physical machine) runs its own
Host Manager to manage the middleware processes for which it is responsible,
regulating and guarding access to its resources.

the remainder of this paper the original, more mature, AgentScape agent migration protocol is
used.
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Figure 2 The AgentScape software architecture.

• Agent Server - An AgentServer provides a programming language specific
runtime environment for agents. Each host can run one or more AgentServers
to host agents supporting e.g., different programming languages.

• Web Service Gateway - The Web Service Gateway enables agents to com-
municate with web services using the SOAP/XML protocol (24).

• Lookup Server - The Lookup Server keeps track of the current location of
agents. Strictly speaking, this service is not part of the AgentScape middle-
ware as it can be run as a stand-alone application. Two versions exist, a
centralized, unsecured version and a decentralized secured version (23).

Agent servers provide agents access to the AgentScape middleware (see Fig-
ure 2). Agent servers are programming language, i.e., code base, specific. A host
can support multiple code bases, by providing multiple code base specific agent
servers, at least one per code base. Agent servers ‘sandbox’ or jail agents, to limit
access to the underlying computer system.

The location manager is the coordinating entity in an AgentScape location
(managing one or more hosts in its location). Note that for fault tolerance a loca-
tion manager may be replicated, but that is beyond the scope of the paper, see (16).
Agent creation, migration, and all policy related issues relevant in the context of a
location, are managed and coordinated by the location manager. The host manager
manages and coordinates activities on a host, in interaction with the location man-
ager. and is responsible for local (at the host) resource access and management.
The policies and mechanisms of the location and host manager infrastructure are
based on negotiation and service level agreements (17).

3 Agent Migration

This section illustrates the basic implementation of agent migration in Agent-
Scape. Other agent platforms that support migration implement a similar form of
agent migration, see for example (10; 27). Each host in an AgentScape location
runs an instance of the AOS kernel, and manages the data and code of the agents it
hosts. Agent containers (14), store all data and code associated with an agent: the
agent’s (executable) code, meta-data (agent id, owner information, authorization
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data, etc.), and (optionally) data the agent may want to store (obtained at some
remote location, etc.).

The following protocol is used in AgentScape for agent migration:

Protocol 1
The protocol for standard agent migration as implemented in AgentScape.

1. An agent sends a ‘migration request’ to its local host manager.

2. This host manager contacts its local location manager, specifying the identi-
fier of the agent and the destination to which it wishes to migrate, i.e., the
destination location.

3. The local location manager contacts the (remote) location manager of the
destination location with a request to accept the migrating agent.

4. If the location manager of the destination location is willing to accept the
agent the remote location manager selects a host within its location and
instructs the corresponding host manager to prepare to receive a migrating
agent. Information on how to contact this chosen host manager is sent back
via the location managers to the host manager of the migrating agent.

5. The local host manager of the migrating agent suspends the agent and finalizes
the state of the agent in an agent container. Next, the local host manager
contacts the remote host manager directly and sends the agent container.

6. Once the transfer is completed, the receiving host manager verifies the in-
tegrity of the agent container. It then sends a message to the originating
host, containing the migration status of the agent. The originating host man-
ager then deletes the suspended agent from its host, and the receiving host
starts the migrated agent.

If any step fails in Protocol 1 above, the migration process as a whole halts
and the suspended agent is restarted at the originating host. The same applies
to the secure migration protocols described in the remainder of the paper. Also,
note that, as AgentScape only provides weak migration, an agent is responsible for
storing useful information in data entries in the agent container. The AOS kernel
guarantees the integrity of the data in agent containers by computing checksums
of each entry in the agent container.

This form of agent migration does not automatically provide security against
outside attackers. An attacker can alter the data stream between two AOS kernels,
if no transport layer security is present. Possible risks include altered agents, where
the attackers performs a man-in-the-middle attack, alter the agent’s code and re-
compute the checksums. It is even possible to insert a completely new agent or to
simply destroy the agent during migration.

A first step towards a secure migration process is achieved by adding transport
layer security.
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3.1 Transport Layer Security

A normal connection does not provide any security features and is vulnerable
to both active (man-in-the-middle) and passive (eavesdropping) attacks. Transport
layer security can be obtained by using a secure connection (SSL (7)). The com-
plete data stream that is transferred over an SSL connection is encrypted, thereby
eliminating all passive attacks.

For authentication the SSL protocol uses certificates (15). It is possible to
use self-signed certificates to set up an SSL connection, but in this case proper
authentication between hosts is not guaranteed. Active attacks are still possible
as an attacker can set up two SSL connections: one between the originating host
and the attacker and another between the attacker and the receiving host. This is
another form (2) of the well-known man-in-the-middle attack.

Authentication between hosts can only be ensured if signed certificates are used.
The identity of the host, for example a URL or IP-address, together with a public
key are signed by a root certificate, together forming a signed certificate. The public
key of the root certificate is stored in a PKI server. When two hosts set up an SSL
connection the signatures of their certificates are checked, using the public key
stored in the root certificate, and only if the certificates match with their identity
is the SSL connection finalized. This prevents all active attacks from outsiders.

Most agent platforms, including AgentScape, use SSL in their implementation
of agent migration. However, mobile agent security should also deal with the far
trickier issue of insider attacks. Especially when an agent platform is deployed in
an open environment. What can be done against attacks from malicious hosts?
Can malicious hosts be identified or is it possible to limit what such hosts can do
to agents? The next sections explore this issue further.

4 Secure Agent Migration

Insider attacks form the main security risk in mobile agent systems, in partic-
ular when agents are used in open environments such as the Internet. In closed
environments in which all hosts are trusted this is not a problem: all hosts are
known to behave correctly. However, mobile agents can also be deployed in open
systems. In such dynamic circumstances it is not always feasible to determine the
trustworthiness of hosts in advance.

In such open environments the malicious host problem forms a serious threat to
the integrity of an agent. The problem stems from the intrinsic features of mobile
agent systems: agents are executed on hosts that can view and alter their (internal)
state, or even delete the agent altogether. Protecting agents from malicious hosts
can be achieved by ensuring the following four points:

1. Protecting the integrity of the migration path

2. Protecting the integrity of the agent itself

3. Ensuring confidentiality of the agent’s data and (binary) code

4. Ensuring integrity of the agent’s control flow
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The migration of an agent from one host to another is called a migration step. A
migration path is a sequence of multiple migration steps that identifies all the hosts,
in order, an agent has visited.

The integrity of the migration path (item 1, above) forms the basis for detecting
malicious hosts and/or preventing them from doing any harm. For example, a
number of techniques (3; 13; 26; 28) have integrity of agent migration paths as
a premise, and can be used to detect tampering with the agent (items 2 & 4).
Confidentiality (item 3) can be ensured by encryption of sensitive data.

The main focus of this and the following sections is the detection of breaches of
integrity in migration paths of mobile agents. The general problem of protecting the
agent from malicious hosts that could alter the agent’s code or data is not addressed
directly. However, as stated before, techniques to detect whether an agent has been
altered can be based on the integrity of an agent’s migration path.

One fundamental (and unsolvable) problem with agent migration is that a ma-
licious host can always delete an agent in its entirety. This can never be prevented.
However, it is possible to detect which host deleted an agent. The only thing that
is needed for this is the preservation of the integrity of the migration path of an
agent. An agent owner can then simply follow the migration path of an agent and
conclude which host deleted the agent. Of course for this to work, the malicious
host should not be able to forge the migration history of an agent. Once a malicious
host is identified as such, the host can be put on a black list, thereby preventing
further malicious behaviour of the host in question.

The host on which an agent is initialized, is assumed to be trusted by the agent’s
owner. This host can be traced by all other hosts at any arbitrary moment in time.
Hosts are assumed to have full control over the agents they run. The consequence
of this assumption is that hosts are able to read and alter information stored inside
agents.

Although agents can decide to only migrate to trusted hosts, i.e., hosts that
have a valid (signed) certificate, a trust relationship does not always give full guar-
antees on the correct behaviour and intentions of hosts. An agent’s migration path
provides a means to detect breaches of integrity.

There are roughly two different approaches known in the literature for recording
agent migration paths: (i) use a centralized trusted third party (TTP) to authorize
and keep track of migration paths or (ii) store (a signature of) migration paths
inside the agents themselves (29). Both approaches are discussed.

The following notation is used in this paper: capital letters A,B,C,. . . denote
hosts, small letters x,y,z,. . . denote agents, arrows (→) represent migration steps
between hosts and [x]A denotes the (digital) signature of host A over some content,
in this case, agent x. In the remainder of this paper the word ’host’ can be read as
meaning either a normal host (computer) or an (AgentScape) location - a number
of hosts administered and hosted at the same domain. The additional steps needed
when dealing with locations, as explained in Protocol 1, are left implicit since they
do not add any essential details to the proposed protocols and do not increase
readability.
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4.1 Centralized Trusted Third Party

A centralized approach requires all migration paths to be registered. Both
sending and receiving hosts register each and every migration step before and after
migration. The trusted third party authorizes the migration and stores the migra-
tion step in its database together with the commitments of the hosts. This makes
it possible to prove, at a later point in time, that both parties had agreed with the
migration step.

This approach has the advantage that it is relatively easy to monitor hosts over
a period of time. Thus, for example, if agents tend to disappear on one specific
host, this host is known to be unreliable, possibly malicious. A centralized trusted
third party may prevent agents from migrating to untrusted and/or unreliable hosts
(simply by not authorizing the migration).

Protocol 2 below gives a more detailed explanation of a migration step, in which
agent x migrates from host A to host B, using a trusted third party.

Protocol 2
The protocol for the migration of agent x from A → B using a trusted third party.
The migration protocol starts when:

1. host A suspends and signs agent x: [x]A

2. host A reports to the trusted third party (TTP) that agent x will migrate
from A to B. A sends [x]A along with the report.

3. host A sends agent x to host B

4. host B receives x and computes [x]B which it sends to the TTP.

5. the TTP verifies that A and B have both signed the same agent. If the
verification passes, the TTP notifies both A and B that the migration has
succeeded, and adds this migration step to the migration path it keeps for
agent x. If verification fails, the migration is not authorized and aborted
altogether.

6. host B starts the suspended agent.b

Figure 3 shows the messages that are sent between the parties. The numbers
used in the figure correspond to the numbers above.

Note that this approach does not prevent hosts from conspiring to forge migra-
tion paths. For example, malicious hosts can simply decide to migrate an agent
between themselves without using the trusted third party. However, after such an
illegal migration, the agent cannot migrate to a non-malicious host without being
noticed. The trusted third party, having not been informed of the previous mi-
gration step, will immediately detect something is wrong and will therefore not
authorize the migration. The trusted third party, however, cannot detect whether
an agent has migrated from a malicious host to multiple malicious hosts returning

bFor the sake of clarity, some details are omitted from this and following protocols. This
protocol has, for instance, not been secured against replay attacks. To solve this problem, other
techniques, such as adding freshly generated random numbers to each signature must be applied.
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Figure 3 Agent migration using a central authority (trusted third party).

to the first malicious host (a cycle), before moving to a non-malicious host using
the trusted third party.

Note also that a centralized approach such as this creates a central point of
failure, and a potential performance bottleneck, i.e., a scalability problem. This
problem can be partially solved by using an agent’s initial host as its trusted third
party.c This is known as a home based approach. The agent platform Mansion uses
a dedicated service: the Agent Location Service (31) that implements this use of
the initial host as a trusted third party.

The central point of failure and performance problems of this approach can,
potentially, also be removed by exploring the option of using multiple TTPs. How-
ever, this leads to new problems such as replication of data and consistency between
TTPs. This problem is left for future research.

4.2 Signature Chain

A method that stores an agent’s migration path together with an agent’s code
and data does not suffer the drawbacks of a single centralized server. The stored
migration path can be protected against tampering using digital signatures (15).
A chain of such signatures can protect a whole migration path of an agent. In this
method, the migration process includes that a host signs a migration step together
with all (signed) previous migration steps (the chain, signed by other hosts).

Protocol 3
The protocol describing the migration step of agent x from B → C, where B
received agent x from A earlier using signature chaining. Agent x’s signature chain
at host B is [x,A → B]A.

1. host B suspends and signs agent x and signs B → C along with the already
existing signature chain: [x,B → C, [x,A → B]A]B . (Note that this signature
will become a new link in the signature chain in step 4.)

2. host B sends the agent with the old signature chain, along with the new link
of the chain to C.

cIf all agents are started from the same host these two approaches are equivalent in terms of
scalability.
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3. host C verifies the signature chain stored with agent x and the new link it
has received from B.

4. if the verification of the signatures is successful, host C adds the new link to
the agent’s signature chain and starts the suspended agent x.

As signatures can only be generated by individual hosts and verified by all
other hosts, this method ensures that breaches of integrity of the migration path
are noticed. The method, however, has some drawbacks: verifying the complete
chain of signatures for long chains is computationally intensive. A more serious
problem is that a malicious host can remove arbitrary cycles from a migration
path. If an agent (accidentally) visits the same malicious host for a second time,
the malicious host can remove the part of the migration path between the first
time it was hosted by the malicious host and the second. The malicious host can
then re-use the old signature chain in the agent for other purposes. This cannot
be detected by other hosts nor by an agent’s owner. Finally, if agents disappear,
e.g., by having been killed by a malicious host, outside hosts are not capable of
identifying where something went wrong.

Note that with respect to cycles there is a difference between the trusted third
party approach and the signature chaining approach. In both approaches a mali-
cious host can remove cycles from the migration path. In the trusted third party
approach, malicious hosts could remove the migration path between conspiring ma-
licious hosts ending with the initial malicious host. In signature chaining a malicious
host can remove a similar cycle which may also have included non-malicious hosts.

In the next section a new distributed approach to integrity protection of migra-
tion paths is discussed. It uses an alternative signature chain concept that improves
on the approaches discussed above. The advantages of a distributed approach are
that the solution scales better in a distributed system and does not have a single
point of failure.

5 Scalable and Secure Agent Migration using Distributed Trust

This section introduces a new approach for the preservation of the integrity of
migration paths of agents. One of the main design goals is scalability, as well as
enhanced security features, improving on known solutions.

In essence, the proposed approach to integrity preservation of migration paths
entails the distribution of trust to several hosts on a migration path. This approach
assumes that an agent is not allowed to migrate to the host on which it currently
runs (irreflexivity), and that the migration path can be recorded together with the
agent’s code and data. In AgentScape this is done by storing the migration path
in the meta-data of the agent’s container. Tampering of the migration path can be
detected by either the agent owner or one or more receiving hosts.

Briefly, the algorithm works as follows: Suppose agent x migrates along the
path A → B → C. Each migration step is recorded within the agent. Each step is
signed by a host. When agent x migrates from B to C, host B asks host A to sign
the migration step (B → C). The resulting signature is stored within agent x’s
agent container. When host C receives the agent and the signatures, it confirms
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receipt to host A. Protocol 4 below provides a detailed application of the algorithm
to a single migration step.

Protocol 4
The protocol describes the migration step B → C of agent x. Host B received agent
x’ from host A earlier, using a distributed trust algorithm. The sequence number
(hop count) used in the migration step A → B is n with n ∈ N. The sequence
number is stored inside the meta-data in agent x’s agent container.

1. host B suspends agent x and asks host A to sign (x,B → C, n+1) (a waiver).

2. host A checks whether seqnr (n + 1) is in line with the seqnr (n), which was
used when the agent migrated from host A to host B in the previous migration
step. If all is correct, host A signs the waiver and sends it back to host B.
Host A remembers that agent x has migrated to host C with seqnr n+1.

3. host B adds the signature [x,B → C, n + 1]A to agent x.

4. host B sends agent x’s agent container to host C.

5. host B records that agent x has migrated from itself to host C with seqnr
n + 1, and waits for C to request further information. Host C will contact
host B if and when host C ships agent x to another host.

6. host C receives agent x’s agent container, verifies the migration chain stored
in this container, and contacts host A to acknowledge the receipt of agent x’s
agent container with seqnr n + 1.

7. host A then checks whether the info from C corresponds to the information
it has recorded previously. If there is a mismatch, it notifies host C of this,
so C can refuse to accept agent x’s agent container; otherwise, C can accept
the container and start agent x. After this step, assuming the migration
from B → C is successful, host A can delete all info concerning agent x, or
better still it can keep a record of the waiver so the migration path can be
reconstructed if the agent is deleted by a malicious host in the future.

Figure 4 shows the messages that are sent between the parties, the numbers
used in the figure correspond with the numbers above.

Each waiver is issued only once, and can be used only once because the receiving
host will ‘consume’ the waiver by contacting the host that issued the waiver. In
Protocol 4, host C contacts host A to confirm receipt of an agent. Consequently, a
malicious host cannot send an agent to different hosts, as it can only acquire one
waiver for the agent. Furthermore, a malicious host cannot send an agent to the
same host twice, i.e., a replay attack, by reusing a waiver obtained before, because
the waiver would have already been used. In other words, host B cannot tamper
with the migration path.

The migration path cannot be tampered with by a single malicious host, because
the entries are linked together via host and sequence number: i) hosts cannot cut
out a middle piece, because the sequence numbers will not match, ii) hosts cannot
replace a middle piece, because the signatures in the chain of hosts will not match,
iii) hosts cannot cut out or replace the tail of a migration chain (including cycles),
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Figure 4 Agent migration using distributed trust.

as the next receiving host will check the migration with the previous host in the
migration chain, using both the host and the sequence number. The essence of this
approach is that the liability of a single migration step is spread over two hosts:
the previous host and the next receiving host, i.e., A and C, in the migration
chain A → B → C. By this unique overlapping migration signature pattern by
all participants, the migration of trusted to untrusted (or untrustworthy) is always
registered (and signed).

B CA D
[B → C]A [C → D]B

Figure 5 Conspiring hosts altering the migration path.

The proposed migration protocol can also withstand two conspiring malicious
hosts trying to manipulate the migration path between them. For example, suppose
that agent x migrated along the path: P → A → Q → B. Now, suppose that B
conspires with A to try to remove host Q from the migration path pretending that
the agent migrated directly from A to B. However, host P , the predecessor of A,
will not issue the waiver [x,A → B]P : it has already issued the waiver [x,A → Q]P
and will refuse to issue another one.

Unfortunately, it is still possible for two adjacent conspiring malicious hosts
to remove a cycle from the migration path. For example, consider an agent that
migrates through malicious hosts B and C along the path A → B → C → · · · →
C → D, as depicted in Figure 5 (note, the migration loop at C). In this case, C
can remove the cycle from the migration path with the help of B before sending the
agent to D. C simply has B issue another waiver for the migration C → D. Note
that C can only remove a cycle if the agent actually returns to C, which the agent
typically cannot be forced to do. If cycles are created, then, contrary to signature
chaining, two adjacent conspiring malicious hosts are always necessary to remove a
cycle.
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The main reason two malicious hosts can still alter the migration path is that the
receiving host in a migration step assumes that at least one of the two preceding
hosts is not malicious. To guard against n malicious hosts, this scheme can be
extended to incorporate at least the n + 1 preceding hosts in handing out the
waivers.

6 Discussion and Conclusions

Agent migration has been discussed in detail in this paper. Starting from un-
secured agent migration, through migration that is secure against outsider attacks
and ending with a discussion of migration protocols that can be used against insider
(malicious hosts) attacks.

The main contribution of the paper is the introduction of a protocol that en-
sures that a breach of integrity in migration paths of mobile agents in large scale
distributed agent systems will be detected. This approach distributes trust over
two (signing) hosts during each migration step. The combination of sequence num-
bers with signatures guarantees that one or more hosts can detect if part of the
migration path, including cycles, has been removed.

Spreading trust over multiple hosts in an agent system clearly has benefits in
terms of scalability and it strengthens the security mechanism, as a ‘single point of
failure’ no longer exists. Orthogonally, a dedicated trust model that can distinguish
the –relative– trustworthiness of hosts in multiple agent systems can be of much
additional value. Reputation and trust models (1) have been studied in the context
of agent systems by, for example, (25; 11). Such models are currently unrelated to
our migration path integrity protocol. Investigating if and how these results could
benefit from each other is future work.

Our protocol works well in situations with only one (unknown) malicious host
in a migration path, or in environments with multiple malicious hosts that do not
conspire together. However, if multiple malicious hosts do conspire together the
situation becomes more complex. A possible solution is to enforce that agents al-
ternate between trusted and untrusted hosts (26) in their migration path. In the
extreme situation where only the initial host can be trusted this solution is equiv-
alent to ‘two-hop boomerang agents’ (21), in which agents always return to their
initial host after each migration step to another host. Another possible solution is
to disallow cycles in migration paths altogether, though this is hard to enforce in
practice, for example, host can have multiple IP-addresses, thereby ‘cloaking’ there
real identity.

The mechanisms needed to instrument this approach are currently implemented
and tested in the agent platform AgentScape (22).
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