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Abstract Distributed management of complex large-scale infrastructures, such
as power distribution systems, is challenging. Sustainability of these systems can
be achieved by enabling stabilisation in global resource utilisation. This paper
proposes EPOS, the Energy Plan Overlay Self-stabilisation system, for this pur-
pose. EPOS is an agent-based approach that performs self-stabilisation over a
tree overlay, as an instance of a hierarchical virtual organisation. The global
goal of stabilisation emerges through local knowledge, local decisions and local
interactions among software agents organised in a tree. Two fitness functions
are proposed to stabilise global resource utilisation. The first proactively keeps
deviations minimised and the second reactively reverses deviations. Extensive
experimentation reveals that EPOS outperforms a system that utilises resources
in a greedy manner. Finally, this paper also investigates and evaluates factors
that influence the effectiveness of EPOS.
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1 Introduction

Distributed resource management is challenging, especially when applied in large-scale
virtual organisations such as power grid infrastructures. The state of these systems changes
continuously: adaptation is required. This paper addresses how local adaptations can be
used for the management of global resource utilisation in large-scale distributed systems.

Adaptivity has been recognised by Wirsing & Holzl (2006) as a means to handle the
arising complexity of knowledge and interactions. Software agents are capable of au-
tonomously adapting their behaviour to dynamic environments as illustrated for resource
management and scheduling in the work of Chakravarti, Baumgartner & Lauria (2005).
Software agents are strongly related to peer-to-peer, grid computing and service oriented
architectures (SOA) with many overlapping concepts and applications. This fact is outlined
in the work of Moro, Ouksel & Sartori (2002), Tianfield & Unland (2005) and Brazier,
Kephart, Parunak & Huhns (2009).

Virtual organisations of agents define communication structures between agents, e.g.,
hierarchical organisations, see Jennings (2001). Agents benefit from hierarchical organi-
sations as they can choose to cooperate and coordinate their actions between and within
them, or compete. Dynamic organised hierarchies, proposed by Luis (1999), can be used to
support adaptive, aggregate, nonlinear behaviour, as a means to reduce complexity. In con-
trast, coordination in unstructured environments entails distributed search and distributed
scheduling as shown by the application examples of Theocharopoulou, Partsakoulakis,
Vouros & Stergiou (2007) and Johansson, Davidsson & Carlsson (2000).

This paper focuses on the problem of stabilisation in global resource utilisation. In this
paper, resource utilisation is defined as the amount of resources that are allocated over a
period of time. Global resource utilisation entails the aggregation of every individual local
allocation that is performed for the same time period. Finally, stabilisation means that the
acquired global resource utilisation maintains the system in a beneficial robust state.

The core question addressed in this paper is the following:
To which extent can stabilisation in global resource utilisation be acquired by local

coordination in the resource utilisation of software agents?
This paper proposes EPOS, the Energy Plan Overlay Self-stabilisation system. EPOS

is a fully decentralised agent-based approach for achieving stabilisation in global resource
utilisation. It is based on one of our earlier papers (Pournaras, Warnier & Brazier 2009b).
The approach of EPOS is threefold and can be outlined as follows:

1. Agents are organised in a tree overlay as an instance of a hierarchical virtual organ-
isation. This organisation scheme structures the interactions and the aggregation of
the agents’ resource utilisations.
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2. Agents are able to exploit alternative resource utilisations that all satisfy their re-
quirements.

3. Agents can make local adaptive decisions on the basis of information they receive
from the agents to which they are linked.

The problem and the proposed solution are illustrated in the context of the energy man-
agement in the electricity domain. This paper assumes a virtual organisation of consumer
devices, specifically thermostatically controlled appliances, such as refrigerators, air con-
ditioners, water heaters etc. These devices consume 25% of the total energy supply in the
USA according to Mazza (2002), thus their management can have a significant impact on
the sustainability of the whole power system.

In this context, thermostatic devices are controlled by software agents. The type of
resource discussed in this context corresponds to the energy consumed by thermostatic de-
vices or the energy provided to these consumer devices by electricity providers. Resource
utilisation also refers to the allocation of energy by the agents of thermostatic devices for a
period of time. Finally, stabilisation of the global energy utilisation means that the system
has fewer deviations (peaks) in its total consumption and is able to shift or ‘fade-out’ high
power peaks. These stabilisation issues are addressed in the related work of Shaw, Attree,
Jackson & Kay (2009) and Strbac (2008).

EPOS is extensively evaluated in a simulation environment. Results reveal significant
improvement in the stabilisation compared to a system that performs greedy selections.
Beyond this comparison, this paper identifies and extensively evaluates the factors that
influence the degree of stabilisation achieved.

This paper is outlined as follows: Section 2 illustrates the technical background related
to the application context. Section 3 discusses issues that concern the self-organisation and
robustness of the tree overlay that EPOS is based on. Section 4 outlines the local tasks and
knowledge of the agents. Section 5 presents the core algorithm of EPOS. Section 6 explains
the local decision-making process and the two fitness functions on which the stabilisation
is based. Section 7 provides an overview of the convergence of the stabilisation process
over the tree overlay. Section 8 moves to the experimental part of this paper by illustrating
the simulation environment and the results derived from it. Section 9 illustrates related
work and Section 10 discusses the findings and open issues of EPOS. Finally, Section 11
concludes this paper and outlines future work.

2 Application

Large-scale power system are highly complex and heterogeneous. They consist of
many different participating parties with different goals, such as consumers, providers, and
utility companies. Sustainability of power systems and distributed energy management is
challenging. One of our related papers (Brazier, Ogston & Warnier 2009) discusses various
challenges related to decentralised self-management in energy markets.

EPOS contributes to the sustainability of power infrastructures by proposing two self-
stabilisation functions in a network of thermostatic devices controlled by software agents.
The functions are the following:

• Minimum deviations: The system proactively tries to minimise the deviations in
the global energy utilisation.



4 Local Agent-based Self-stabilisation in Global Resource Utilisation

• Reversed deviations: The system reactively reverses the deviations of a previous
global energy utilisation. This means that the average result of the two global energy
utilisations should be a ‘flat’ one over time.

In Section 1, stabilisation is defined and related to a beneficial robust state of the sys-
tem. The above functions correspond to two such states. The first function assumes that the
system does not receive considerable perturbations. It aims to retain this state by keeping
the deviations to a minimum. In contrast, the second function assumes that some pertur-
bations are experienced by the system and thus it should compensate them. For example,
a sudden peak in the energy consumption results in increasing the energy provided by a
power plant. For this reason, reversing the high energy consumption to a low energy con-
sumption in the next utilisation period keeps the cost of the energy provided by this power
plant balanced.

As mentioned before, EPOS is based on agents that control thermostatic devices. It
is also assumed that these agents can communicate through an infrastructure such as the
Internet or the dedicated power grid. An example of the latter communication scheme is
illustrated by Stadler, Krause, Sonnenschein & Vogel (2009). These options are realistic
according to the work of Guo, Li & James (2005), James, Cohen, Dodier, Platt & Palmer
(2006) and Hammerstrom (2002).

EPOS is able to apply the above stabilisation scheme by exploiting local alternative
utilisations based on which the thermostatic devices can operate. Thermostatic devices
work in a periodic fashion by turning the thermostat ‘on’ and ‘off’. In this way, the tem-
perature of the device remains within the target range of its operation. The temperature
for which the thermostat changes from the ‘on’ state to the ‘off’ state, and visa versa, is
referred to as the temperature setpoint. Note that thermostatic devices consume energy
during the ‘on’ state.

The intuition behind EPOS is that software agents can modify the temperature set-
points and change the energy utilisation over time by keeping the target temperature range
unmodified. Thus, software agents in EPOS generate alternative plans for energy utilisa-
tion for a given period of time. Each plan consists of a sequence of discreet values. Each
value represents a level of energy utilisation. A set of possible plans represents different
options for energy utilisation for a single device during a given period of time. Note that
this notion of energy plan is used throughout this paper. Related work, such as the one
by Lu, Chassin & Widergren (2005), also explores these alternative energy utilisations.
Figure 1 depicts the idea of generating different possible plans for a thermostatic device
such as a water heater.

Each agent in EPOS should know which possible plan to execute. This means that
the agents should choose one of the configurations for the thermostat for the time period
defined by the energy plans. The decisions of all agents as to which plan to execute poten-
tially results in a global plan that is more stabilised compared to a greedy system in which
agents always use a single plan. Note that the global plan corresponds to the aggregation
of every selected local utilisations (plans) of the participating agents in the system.

The aggregation and decision-making scheme of EPOS is based on a tree overlay.
Before discussing these processes, the next section outlines how the agents can be self-
organised in a robust tree overlay that can support the aggregation and decision-making.
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Figure 1 Two possible energy plans. Possible plan ‘A’ is a conventional one that always uses
the same temperature setpoints. In contrast, the possible plan ‘B’ is generated by modifying the
temperature setpoints. The power distribution of this plan over time is different.

3 Self-organisation and Robustness

Tree overlays can be a very effective distributed communication scheme for performing
operations such as search, aggregation and information dissemination. The cost of these
operations is usually logarithmic or bounded to the size of the network.

EPOS could perform central coordination to optimally stabilise the global energy utili-
sation. This approach would include the brute-force calculation of all the aggregated com-
binations of possible plans that the agents generate. This solution guarantees the discovery
of the best global solution, considering and assuming that the sets of possible plans do not
change during aggregation. Such central coordination, however, does not scale. The com-
plexity is O(pn), where p is the number of possible plans per agent and n is the number of
agents in the network.

In contrast, EPOS performs fully distributed coordination over a tree overlay. In this
case, the complexity is bound to O(pc), where c is the number of children per node in the
tree. The estimations assume a balanced tree structure and fixed p for all agents. Scalabil-
ity improves significantly and is influenced by the trade-off between processing cost and
latency. Similar trade-offs are explored by Tan, Jarvis, Chen & Spooner (2006).

Despite the above benefits of using tree overlays, they are highly sensitive to failures
in distributed environments. Similar to other structured overlays, such as Distributed Hash
Tables (DHTs) discussed by Rhea, Geels, Roscoe & Kubiatowicz (2004), individual node
failures have a high impact on the global topology, especially in trees. A failure in a
node disconnects the branch underneath. In addition, trees require optimisation according
to different, and sometimes conflicting, performance metrics. For example, in the work
of Tan, Jarvis, Chen & Spooner (2006), a bandwidth-ordered and a time-ordered tree are
combined to optimise application-level multicast. The work of Frey & Murphy (2008)
explores different repair strategies and Fei & Yang (2007) propose a proactive approach to
recovery from failures. Finally, Plumtree, proposed by Leitao, Pereira & Rodrigues (2007),
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combines eager and lazy push gossiping strategies to build and maintain a dynamic tree
overlay.

These examples reveal significant effort from different communities, that investigate
different applications, to guarantee a certain level of robustness and fault-tolerance in tree
overlays. Thus, using trees in a dynamic distributed environment could be feasible in many
cases.

Different applications have different notions of robustness. It is difficult to identify
the most suitable self-organised tree overlay that could satisfy the requirements of EPOS.
Some of our related work (Pournaras, Warnier & Brazier 2009a) focuses on providing a
generic self-organisation framework for: (i) proactively optimising a tree overlay accord-
ing to one or more metrics provided by the application that uses the overlay, (ii) reactively
adapting the topology to the changes of the environment. AETOS, the Adaptive Epidemic
Tree Overlay Service, AETOS is based on the concept of combining highly robust unstruc-
tured overlays with structured ones.

Combining EPOS with AETOS could enhance the effectiveness of stabilisation as
it guarantees that more nodes dynamically participate in the aggregation and decision-
making processes that are described in Section 5 and 6 respectively. However, this paper
focuses on EPOS, leaving reliability, fault-tolerance, the integration of the two systems and
its evaluation for future work.

4 The Locality of the Agents

Agents use local knowledge to perform local computations and execute their tasks
locally, using knowledge acquired from their children and/or their parent. Table 1 outlines
the mathematical symbols that are used for the remainder of this paper.

A plan is represented by a set of arithmetic values that correspond to the energy con-
sumed at a specific time period. For example, the plan x = (5.3, 6.4, 6.1, 8.6, 8.1, 4.2)
represents the utilisation of energy for 6 consecutive equal time periods. During the third
time period, the plan allocates 6.1 units of energy. Note that the symbols for plans are bold
as they are sets of energy values over time. In contrast, the set of plans, as supersets, are
depicted with bold and capital letter.

4.1 Overview of Agent Tasks

The main tasks of an agent are (plan) generation, (plan) aggregation and (plan) execu-
tion:

Generation is composed of two subtasks:

• Planning: A set P of possible plans p is generated for the energy consumption of
the thermostatic device that an agent represents over a fixed time period.

• Parent Inform: The agent sends its possible plans P and one or more aggregate
plans a to its parent. The aggregate plans are described in detail in Section 4.2.

Aggregation is composed of four subtasks:

• Pre-processing: The agent generates the set of combinations C from the received
sets P of possible plans p. It also merges the aggregate plans a ∈ A received from
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Table 1 The main mathematical symbols used in this paper.

Symbol Description

Plan

p possible plan from P

p′ selected possible plan from P

a aggregate plan referring to an or ah

an aggregate new plan (an ⊆ g)

ah aggregate history plan (ah ⊆ g ∈H)

c combination plan from C

c′ selected combination plan from C

g global plan (g ⊇ a)

Set of Plans

P set of possible plans p

C set of combination plans c

A set of aggregate plans a

An set of aggregate new plans an

Ah set of aggregate history plans ah

H the set of plans (p′, g) from a previous aggregation round

Fitness Function
fMD the minimum deviations fitness function

fRD the reversed deviations fitness function

its children. Note that A is the set of aggregate plans received from the children of
an agent. Section 4.3 describes the pre-processing task in detail.

• Selection: The agent chooses the best plan combination c′ ∈ C. The decision-
making is based on one of the fitness functions fMD and fRD as explained in Sec-
tion 6. From the best combination c′, each selected plan p′ for every child is derived.

• Update: Each aggregate plan a of the agent is updated with the respective selected
combination c′. More information about the update task is given in Section 6.1 and
6.2.

• Children Inform: The agent sends the selected plans p′ to its children.

Execution concerns the execution of the selected plan p′ ∈ P that is received from the
parent. In this case, the agent controls the ‘on’ and ‘off’ states of the thermostat according
to the energy utilisation that the selected plan defines.

The root agent executes an additional broadcast task that is important for the aggregation
process. Section 5 provides more information about the execution of this additional task.



8 Local Agent-based Self-stabilisation in Global Resource Utilisation

4.2 Aggregate and History Plans

The aggregate plan a represents the plan selections that have been made so far over
the tree overlay by a set of agents. Specifically, it refers to the aggregated selections that
have been made in the branch underneath an agent. In EPOS, an aggregate plan can be: the
aggregate new plan an and the aggregate history plan ah. The former corresponds to the
aggregate plan that is calculated by the selections during the current aggregation, whereas
the latter refers to the selections in a previous aggregation. The aggregate plan a from
leaf agents is zero, whereas the one of the root agent, at the end of each round, is the final
converged global plan g.

The notion of history H , as part of each agent’s knowledge, is in fact a set H = (p′, g)
that includes: (i) the selected plan p′ ⊂ g ∈ H of a previous aggregation performed and
(ii) the root’s aggregate plan, that is the global plan g as a result of a previous aggregation
over the tree overlay. Note that p′ ∈ H ⊆ ah ⊆ g ∈ H . The global plan is broadcasted
by the root at the end of each round. The role of this task in the aggregation process is
illustrated in Section 5.

4.3 Aggregation pre-processing

Before an agent can calculate the fitness function, it performs some pre-processing of
the information it receives from its children. This pre-processing concerns the computation
of all possible combinations C of all possible plans generated by its children. For example,
an agent with c = 2 children, each with p = 2 possible plans generates the following 4
combinations:

C = {(P 1
1 + P 2

1 ), (P 1
1 + P 2

2 ), (P 1
2 + P 2

1 ), (P 1
2 + P 2

2 )}

with the expression P i
j defining the possible plans in each combination for the i =

1, ..., c child and j = 1, ..., p possible plan.
Each agent also merges the aggregate plans received from its children by summing

them up. The computation of the aggregate plans is performed as follows:

an =
∑

i=1,2,...,c

an ∈ Ai
n ah =

∑
i=1,2,...,c

ah ∈ Ai
h(1)

for c number of children.

5 The Core Algorithm

The core algorithm of EPOS, illustrated in Algorithm 1, defines (i) the interactions
between the agents over the tree overlay and (ii) the execution sequence of the local tasks.
The algorithm is based on the notion of the aggregation step and aggregation round. These
concepts are illustrated in Figure 2.
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Figure 2 The aggregation step and aggregation round of EPOS

Algorithm 1 The core agent algorithm of EPOS
1. if receive parent inform messages
2. then aggregation-pre-processing;
3. aggregation-selection;
4. aggregation-update;
5. aggregation-children inform;
6. generation-planning;
7. generation-parent inform;
8. if is root
9. then aggregation-selection;
10. aggregation-update;
11. broadcast;
12. execution;
13. if receive children inform message
14. then execution;
15. if receive broadcast message and is leaf
16. then generation-planning;
17. generation-parent inform;

During an aggregation step, the agents that belong in a level of the tree receive plan
information from their children. This is the set of possible plans P and the aggregate
plans a. Upon receiving this information from each of their children , they execute the
aggregation and generation tasks respectively (lines 1-7 in Algorithm 1). During these two
tasks, the agents select a possible plan for execution for each of their children (line 3 in
Algorithm 1), inform them about these selections (line 5 in Algorithm 1) and trigger the
next aggregation step by informing, this time, their own parents about their plans (line 7
in Algorithm 1). The children execute the selected plans (line 14 in Algorithm 1). The
process is recursive over all levels of the tree.

Note that the root agent selects its own execution plan, without sending the plans to
another agent (lines 8-12 in Algorithm 1). In this case, the set of combinations is C = P .
In other words, the root aggregates twice, one for its children and one for itself. Moreover,
the root broadcasts information to all the other agents and, in this way, can initiate the next
aggregation round.

An aggregation round is defined by all of the consecutive aggregation steps starting
from the leaf agents up to the root agent, ending with the global aggregate plan g being
broadcasted to all agents. When the leaf agents receive the broadcast message, they execute
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the generation task and, in this way, trigger the next aggregation round (lines 15-17 in
Algorithm 1).

6 Decision-making

Choosing the best possible plan is related to the stabilisation goal of the system. As
outlined in Section 2, EPOS proposes a proactive and reactive stabilisation. Decision-
making is based on two fitness functions that achieve stabilisation by minimising deviations
or reversing deviations. The next two subsections illustrate these two fitness functions.

6.1 Stabilisation by Minimising Deviations

The minimum deviations fitness function defines the best combination c′ to be the
one that minimises the standard deviation σ of the aggregate new plan an. This can be
expressed as:

fMD = min
i=1,2,...,|C|

σ(an + Ci)(2)

This fitness function checks which of the potentially new aggregate plans has the mini-
mum overall standard deviation σ. Section 7 discusses the convergence of the process. The
selected plans for every child are extracted from the best combination c′ ∈ C. Moreover,
the aggregate knowledge is updated. This action concerns the update of the aggregate new
plan as an = an + c′. Finally, the selected plans p are sent to the respective children.

6.2 Stabilisation by Reversing Deviations

Given a previously aggregated global plan , the reversed deviation fitness function re-
sults in a new global plan that reverses the deviations of the previous one. This previous
global plan, called the global history plan, is devised by the same agents, representing
the same devices. This fitness function specifies that, if resource providers have to supply
g+ vt amount of resources at time t then reverse of the deviations provides g− vt. Where
g is the average value of plan g and vt is the variation, that is the difference between the
average value g and the value of the global plan at time t.

The aggregation process remains exactly the same. The fitness function is calculated
as follows:

(3) fRD = min
i=1,2,...,|C|

σ(

history︷ ︸︸ ︷
g − ah +

new︷ ︸︸ ︷
an + Ci)︸ ︷︷ ︸

replacement

The aggregate history plan ah is replaced by the equivalent summation of the aggregate
new plan an and the plan Ci from the combinations (ah ≡ an + Ci). This replacement is
adapted (summed) to the global history plan g ∈H .

The concept behind this reversing operation is the following: The average of the global
history plan and global new plan must ideally result in zero deviations. This is because
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(g+vt)+(g−vt)
2 = g. Choosing the combination that contributes best on transforming vt

to −vt results in a global plan with reversed deviations. The transformation is gradually
achieved in every aggregation step. Section 7 discusses the convergence of this process.

Finally, as in the previous case, the aggregate plans are updated as an = an + c′ and
ah = ah + p′ ∈ H respectively. As mentioned in Section 6.1, the selected plans are
extracted and sent to the respective children.

7 Emerging Stabilisation Convergence

The two fitness functions, described in Sections 6.1 and 6.2, are based on local knowl-
edge. The decisions each agent makes are based on the aggregate plans it receives from its
children, by definition a subset of the global knowledge. Summations are performed over
the hierarchical structure during the aggregation process. In each aggregation step, the ag-
gregate values of the aggregate plans increase. As a result, the combinations are adapted
to plans that come from the operations of more agents.

The aggregation starts from the leaf agents. In this first level of the tree, the parents
provide the best option taking into account only the information from children as the values
of the aggregate plans are zero. In the next steps, local decisions have a twofold advantage.
Each agent not only chooses the plans that: (i) satisfy the stabilisation goal locally but also
(ii) plans that ‘fade out’ the effect of less optimal decisions in previous aggregation steps.
For the first fitness function, the approach based on minimising deviations, the second
advantage is achieved by adapting the combinations to the aggregate new plan. For the
second fitness function, the approach based on reversed deviations, the aggregate history
plan is replaced by the aggregate new plan and adapted to the global history plan. The
degree of adaptation increases after each aggregation step as the values of the aggregates
plans increase as well.

This step-by-step emerging convergence is depicted in Figure 3 for the second fitness
function, namely the function based on reversed deviations. In the first aggregation steps,
decisions are mainly based on the aggregate history plan. As aggregation evolves, the
global history plan is gradually replaced by the aggregate new plan. Finally, the aggregate
new plan converges to the new global plan devised by the root agent.

8 Experiments and Results

This section illustrates the experimental environment and the results from the evalu-
ation of the proposed stabilisation approach. More specifically, a series of experiments
evaluate the two fitness functions: the minimum deviations and reversed deviations de-
scribed in Section 6.1 and 6.2 respectively.

EPOS is compared with a system that performs greedy selections. This means that there
are no alternative energy plans. This is implemented by configuring agents to generate a
single possible plan. There is also an effort to compare EPOS with the optimum centralised
coordination of complexity O(pn) that is discussed in Section 3.

The experimental study aims to answer the five following questions:

1. What is the degree of minimum deviations achieved in EPOS compared to greedy
selection and centralised coordination?
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Figure 3 Visualisation of the stabilisation convergence in every aggregation step for the reversed
deviations fitness function.

2. What is the degree of successful reversed deviations?

3. How does the number of possible plans influence the stabilisation of EPOS?

4. How does the local plan deviations influence the stabilisation of EPOS?

5. How does the organisation of the tree overlay influence the stabilisation of EPOS?

Section 8.1 outlines the simulation environment. Sections 8.2-8.6 illustrate the results
for each of the above questions respectively. Section 8.7 summarises the findings.

8.1 Simulation Environment

The simulation scenario assumes a network of interconnected thermostatically con-
trolled appliances. These devices are represented by software agents in a hierarchical vir-
tual structure. The hierarchical structure, that is a tree, is balanced. The heterogeneity of
devices over the network is simulated by the top-down approach illustrated in Figure 4.

The simulation configuration starts by considering the following (Level 1 in Figure 4):
(i) the average consumption of a generic thermostatically controlled appliance, (ii) the de-
viation of this average consumption that represents different types of thermostatic devices
(refrigerator, water heater etc.) and (iii) the total number of these types. Then a number of
average consumption seed values are randomly generated for every type of device (Level
2 in Figure 4). The seed values belong to the range defined by the deviation of average
device consumption that represents different types of thermostatic devices. The number
of seeds is equal to the number of types of thermostatically controlled appliances in the
network. The consumption of a specific type of device also varies in a much smaller pro-
portion compared to the deviation of average consumption among different types (Level 3
in Figure 4).

Moreover, every agent in the network, regardless of which type of device it represents,
generates a fixed number of possible plans over a fixed time period (Level 4 in Figure 4).
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Figure 4 The top-down approach of the simulation environment configuration

The generation of the plans is simulated as follows: for every final average consumption of
every device, a random sample is generated with size equal to the number of energy values
of the plan. The values are estimated between a percentage range of plan deviation from
the average consumption value of the plan. For example, a 20% plan deviation from the
average consumption of value 10, results in deriving random values from the range [8,12].

Finally, user consumption profiles are simulated (Level 5 in Figure 4). Each device
has a high, a medium and a low consumption profile. The consumption profile coefficient
multiplies or divides respectively the values of the possible plans. The profiles change
cyclically in every round and are initially attributed randomly to devices. This means that
every individual device may start with any of the high, medium or low consumption profiles
and it follows the same cyclical row in every round.

Four experimental setting are defined for the evaluation of EPOS. Note that in this pa-
per these settings are referred as Simulation Environments (SimEnv). Table 2 outlines the
parameters for each of them. Simulation Environment 1 is a small-scale environment of 15
agents for comparing EPOS with the optimum central coordination. Simulation Environ-
ment 2 is used as an illustrative environment for the evaluation of the minimum deviations
fitness function. It is also used for evaluating the same fitness function under varying the
number of possible plans. Simulation Environment 3 does not use consumption profiles
and varies the deviation of the generated possible plans. This has the potential to reveal
if local deviations affect the global deviations. Finally, Simulation Environment 4 varies
the number of children over a series of experiments to evaluate how the tree organisation
affects the stabilisation of EPOS. It does not use consumption profiles, similarly to Simu-
lation Environment 3, and keeps the number of possible plans equal to 3.

Note that the units for energy consumption are the same in all the simulation settings.
The simulations runs for 100 rounds and the illustrated results are averaged over this run-
ning period.
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Table 2 Simulation settings used for the experiments and evaluation.

Parameter SimEnv 1 SimEnv 2 SimEnv 3 SimEnv 4
Num. of Agents 15 3280 3280 3280

Num. of Children 2 3 3 2-5
Num. of Possible Plans 2 2-7 5 3

Num. of Values/Plan 10 10 10 10
Avg. Device Consumption 0.5 0.5 0.5 0.5

Num. of Device Types 3 3 3 3
Avg. Cons. Deviation/Type 0.35 0.35 0.35 0.35

Avg. Cons. Deviation/Type/Device 0.035 0.035 0.035 0.035
Plan Deviation 90% 90% 10%-90% 50%

Num. of Consumption Profiles 3 3 1 1
Consumption Profile Coefficient 2 2 1 1

8.2 Evaluation of Minimising Deviations

The minimum deviations fitness function is evaluated by calculating the standard de-
viation of the global plans at the end of each round. Figure 5a compares EPOS with the
optimum central coordination and greedy selection in matters of the standard deviation in
the final global plans. Figure 5b illustrates an example of two groups of global plans with
different consumption profiles, one aggregated by the EPOS system and a second aggre-
gated by the greedy system. The results derived by using Simulation Environment 1 and
Simulation Environment 2 respectively.

Figure 5 The effect of EPOS in minimising deviations. (a) The standard deviation of the global
plans is measured using Simulation Environment 1. EPOS is compared to central coordination and
greedy selection. (b) Two groups of global plans with 3 consumption profiles for each one are
shown. For illustration purposes, each profile is also depicted with an enlarged figure, indicating the
qualitative difference in the stabilisation. The data are collected using Simulation Environment 2.

In Figure 5a, the results collected from the small-scale environment (Simulation En-
vironment 1) indicate that EPOS stabilisation lies between greedy selection and optimal
centralised coordination. The average standard deviation for 100 rounds in the centralised
coordination is 0.42, whereas, for EPOS and greedy selection the standard deviation is 0.79
and 1.08 respectively.

Figure 5b illustrates the energy consumption of 3 consecutive global plans that con-
sist of 30 time intervals. In every round, or every 10 time intervals, the consumption
changes due to the local consumption profiles. The deviations decrease 78.71%, 36.54%
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and 73.46% in EPOS compared to the greedy selection. The difference in the global plans
is depicted in the three enlarged figures.

Please note that EPOS does not aim to stabilise consumption between different profiles.
The global energy consumption changes and this paper focuses on the decrease of positive
and negative peak loads in each aggregate plan.

8.3 Evaluation of Reversing Deviations

The reversed deviations fitness function is evaluated by calculating the correlation co-
efficient r of the global plans that are reversed during simulation runtime. Ideally, optimum
reversing corresponds to a correlation coefficient between two global plans equal to ‘-1’.
Figure 6a illustrates the values of the correlation coefficient during the simulation runtime
with 70% plan deviation. Figure 6b depicts the reversing effect in two global plans. The
data are collected from Simulation Environment 3.

Figure 6 The effect of EPOS in reversing deviations. The data collected by using Simulation
Environment 3 (70% plan deviation). (a) The correlation coefficient of the reversed global plans
during simulation runtime. (b) An example of reversing deviations between two global plans. Their
average is depicted as well.

Figure 6a reveals that there is always a negative correlation between two global plans
on which the reversing function is applied. This means that EPOS reacts always positively
as is shown in these simulation settings. The average value of the correlation coefficient is
‘-0.8’ in this case.

Figure 6b illustrates the reversing effect in two global plans. The global new plan
converges to a mirroring version of the global history plan. The average of these two plans
is also drawn to depict the effect of the nearly flat energy consumption.

8.4 Evaluation of Varying the Number of Possible Plans

The number of possible plans is a local parameter of EPOS. The purpose of the follow-
ing experiments is to examine how the number of local options that the agents have affects
the global stabilisation. For this reason, multiple experiments have been run in Simulation
Environment 2 and 3 by varying the number (#) of possible plans. Figure 7 illustrates how
the effectiveness of the two fitness functions is affected in this case.

Figure 7a illustrates the standard deviation values of the global plans for the minimum
deviations fitness function in EPOS and for the system that performs greedy selections.
The increase in the number of possible plans influences the stabilisation positively as the
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Figure 7 The effect of varying the number (#) of possible plans that the agents generate in
EPOS. The data are collected by using Simulation Environment 2 and 3 respectively. (a) The average
standard deviation in EPOS and greedy selection for the minimum deviations fitness function. (b)
The correlation coefficient in EPOS for the reversed deviations fitness function.

values of the standard deviation decrease. For 2 possible plans the difference in the de-
crease between the two methods is 9.41, whereas for 7 possible plans it almost doubles to
17.96, denoting almost double improvement. The reason for this positive influence is the
increased number of options from which agents can choose, resulting in a higher potential
for better stabilisation.

The number of possible plans also influences the reversing effect as Figure 7b reveals.
In this case, the similarity between the global history and new global plan is examined by
increasing the number of possible plans in each agent. Similarity is measured by calcu-
lating the correlation coefficient r of the values of the plans, similarly to the evaluation
described in Section 8.3. The values of r decrease from ‘-0.37’ to ‘-0.85’ as the number of
possible plans increases in the range of 2-7. In this case, agents have again more options
from which they can choose and thus a higher potential to reverse a plan more effectively.

8.5 Evaluation of Varying the Plan Deviation

The simulation environment described in Section 8.1 allows a change in the degree
of deviations of the local generated plans. The issue that arises in this case is if local
deviations affect global ones. Is higher stabilisation achieved when the local plans vary
more from their average or does the opposite relationship hold? In the experiments below,
the percentage of deviations from the average is varied between 10% and 90%. Simulation
Environment 3 is used for the evaluation in this case. The effect of the two fitness functions
in this simulation setting is outlined in Figure 8.

Figure 8a shows a clear linear relationship between the deviations of the local plans
from their average and the deviations in the final global plans. The standard deviation
increases from 0.76 to 6.63 for EPOS and from 1.50 to 13.42 for greedy selection. Note
that the improvement in the stabilisation between EPOS and greedy selection is nearly 50%
in this simulation setting.

In contrast, Figure 8b shows some different results. In this case, as the local deviations
of the plans from the average increase, the correlation coefficient r of the reversed plans
decreases from ‘-0.75’ to ‘-0.84’. This reveals that more local deviations result in a more
successful global reversing effect. These results indicate that without deviations in the local
plans, the system is unable to converge. The reversed deviations fitness function requires a
search space to reverse the global plan. This search space is the local plan deviations.
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Figure 8 The effect of varying the percentage of plan deviations from the average in EPOS. The
data collected by using Simulation Environment 3. (a) The average standard deviation in EPOS and
greedy selection for the minimum deviations fitness function. (b) The correlation coefficient in EPOS
for the reversed deviations fitness function.

8.6 Evaluation of Varying the Number of Children

The stabilisation scheme of EPOS is based on a tree overlay, thus questioning the in-
fluence of the tree organisation on its effectiveness is important. Although there are many
aspects with this issue, this paper only investigates the variation of the number of children
in (static) balanced tree overlays. This parameter is varied from 2 to 5. A higher number of
children could not be supported in the current version of the custom simulator that is used
as the storing and processing complexity increases exponentially. This is because the num-
ber of combinations that are generated and evaluated by the agents increases exponentially
as well.

By varying the number of children from 2 to 5, the topology of the tree overlays
changes as follows: for 3280 agents, the number of levels in the tree is 12, 8, 7 and 6
respectively. The number of leaves in each topology is 1233, 2187, 1915 and 2499 respec-
tively. These numbers mean that the tree structure changes from being ‘long’ and ‘thin’ to
‘short’ and ‘fat’. The intuition behind this experiment is to investigate if a potential conver-
gence of the system to the optimum central coordination exists as the number of children
increases. The fact that the tree structure changes to ‘short’ and ‘fat’ also indicates that the
overlay converges to a star topology. Figure 9 illustrates the stabilisation in the two fitness
functions with the results collected using Simulation Environment 4.

Figure 9 The effect of varying the number (#) of children per agent in EPOS. The data is col-
lected by using Simulation Environment 4. (a) The average standard deviation in EPOS and greedy
selection for the minimum deviations fitness function. (b) The correlation coefficient in EPOS for
the reversed deviations fitness function.
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Figure 9a illustrates the average standard deviation for EPOS and greedy selection.
The increase in the number of children indicates a step-by-step decrease of in total 1.89 in
the average standard deviation. This value is relatively low, thus definite conclusions can
not be reached about how positively the increase in the number of children influences the
stabilisation achieved using the minimum deviations function.

Similarly, Figure 9b cannot provide a clear indication if the number of children in-
fluences the reversed deviations function in EPOS. In this case, there is again a small
improvement, but the difference in the correlation coefficient is 0.07, which is extremely
small.

Despite the challenge to explain these results in a deterministic way, our explanation is
based on the fact that there is a trade-off between adaptation and optimality in the decision-
making. This means that when the number of children increases, the agents generate more
combinations and their decisions are much more informed. However, the tree has fewer
levels and thus fewer adaptations are performed. Note that in every aggregation step the ag-
gregate plans are used for adapting the combinations. Every aggregation step corresponds
to a level in the tree overlay. This explains why adaptations are fewer when the levels of
the tree are fewer as well.

8.7 Evaluation Summary

The results from the four simulation environments depicted in Table 2 and their evalu-
ation provide the following answers to the questions set at the beginning of this section:

1. What is the degree of minimum deviations achieved in EPOS compared to greedy
selection and centralised coordination?

EPOS always provides higher stabilisation than greedy selection. The results col-
lected from Simulation Environment 2 reveal that deviations decrease in the range of
36.54%-78.71% and the decrease is 50% in Simulation Environment 3. The smaller-
scale experimental environment indicates the stabilisation of EPOS (0.79) between
central coordination (0.42) and greedy selection (1.08).

2. What is the degree of successful reversed deviations?

EPOS always achieves a negative correlation that ranges from ‘-0.37’ to ‘-0.85’ in
the simulation settings of Table 2. The average result of the two global plans corre-
sponds to a ‘flat’ stabilised plan with its deviations approaching zero.

3. How does the number of possible plans influence the stabilisation of EPOS?

The increase in the number of possible plans increases the stabilisation in both fit-
ness functions. In the minimum deviations, the improvement between EPOS and
greedy selection almost doubles. In reversed deviations, the negative correlation
also increases reaching the value of ‘-0.85’ in the results collected using Simulation
Environment 2.

4. How does the local plan deviations influence the stabilisation of EPOS?

The local plan deviations influence the global ones as the experiments in Simulation
Environment 3 reveal. The stabilisation in case of minimum deviations deteriorates
linearly as deviations in the local generated plans increases. In contrast, the stabili-
sation from the reversed deviations fitness function benefits from the local deviations
as the correlation coefficient decreases from ‘-0.75’ to ‘-0.84’.
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5. How does the organisation of the tree overlay influence the stabilisation of EPOS?

The experimental settings could not provide a clear answer to this question. There
is a positive influence in the effectiveness of stabilisation in EPOS when the number
of children increases but it is an extremely small one. This issue must be further
investigated in line with our future work that concerns the integration of EPOS with
AETOS (Pournaras, Warnier & Brazier 2009a).

9 Related Work

Energy management covers a wide range of research areas and problems. Most related
work either focuses on the management of providers or consumers. The latter, which is
the main focus of this paper and the focus of this related work, is referred as demand-side
management.

Load-shifting, that appears in most related approaches, is the stabilisation approach
that is close to the concept of EPOS. In the work of Stadler, Krause, Sonnenschein & Vogel
(2009), cooling devices are assumed to respond to signals from the power grid in order to
decrease the energy consumed during peak times or shift their ‘on’ states to periods with
low energy demands. The main concept of this approach is very close to the one of EPOS.
However, the whole process is centrally controlled with no interactions among devices.
For example, it is not clear what happens in case the devices shift their consumption to
another time period resulting in a shift of the peak.

Similar centralised methods are illustrated in other approaches as well, as they guar-
antee optimal control and optimal load-shifting. For example, Middelberg, Zhang & Xia
(2009) propose such an approach that is based on a binary integer programming problem
that can be solved with existing methods. The model is applied for the management of
a colliery. A similar integer programming model is proposed by Ashok (2006) for the
management of steel plants. In contrast to EPOS, these central approaches are mostly suit-
able for industrial environments rather than a wide large-scale deployment in household
consumers.

Load-shifting can be also achieved in the context of energy markets with price-response
approaches. In these cases, users actively participate and buy energy for a period of time.
Prices change dynamically according to the demand and the load. These load-shifting po-
tentials are explored by Faruqui & George (2005), McDonough & Kraus (2007) and Hop-
per, Goldman, Bharvirkar & Neenan (2006). These methods require (i) the investigation
of the user consumption profiles and (ii) the active participation of the users in the system.
These requirements cannot be met in every case. This is why EPOS proposes a fully auto-
mated distributed method for stabilising the global resource utilisation, transparent for the
user and the other systems of the power infrastructure.

10 Discussion and Open Issues

EPOS introduces a new concept of stabilisation in power systems that goes beyond
load-shifting. The beneficial robust state introduced in Section 1 enables the system to
adapt to various conditions that appear, and react appropriately. EPOS provides two poten-
tial solutions towards such beneficial robust states: the proactive minimisation and reactive
reverse of the deviations in the global resource utilisation. This reveals that there is space
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for applying a wide range of energy management policies beyond load-shifting and even
beyond the two stabilisation functions that are illustrated in this paper.

Our vision towards autonomic and sustainable power infrastructures is a stabilisation
framework based on:

1. the realisation of a generic fitness function.

2. the unification of EPOS with other parts of the power system.

The realisation of a generic fitness function can emerge local selections of energy util-
isation to any acquired global utilisation. The second issue means that stabilisation should
not only concern thermostatic devices but also other consumption devices. It also means
that consumers and providers should not be decoupled but rather both be part of an inte-
grated system. Environmental friendly resource providers, such as wind and solar gener-
ators have a very high cost of storing and later distributing their generated energy. Thus,
enabling consumers to use this energy when it is generated can lead to significant decrease
in the storing costs. These problems are outlined by Middelberg, Zhang & Xia (2009).

Software agents are able to locally control household devices but also participate in
higher organisational structures. This is the reason why they have been envisioned as the
main computing paradigm for power systems in the book of Rehtanz & Rehtanz (2003).
Furthermore, the use of a tree overlay appears to be a very effective communication scheme
in this work, allowing stabilisation convergence in the two proposed stabilisation functions.
Tree overlays are widely considered in applications that require effective search, decision-
making, information dissemination and aggregation. All these operations are crucial in
power systems. These benefits motivate the further use of tree overlays in future work.
However, guarantying their resilience to failures is crucial when considering large-scale
distributed environments. The integration of EPOS with the AETOS (Pournaras, Warnier
& Brazier 2009a) system, mentioned in Section 3, can potentially bridge this gap.

11 Conclusions and Future Work

This paper describes EPOS, the Energy Plan Overlay Self-stabilisation system. EPOS
is based on an agent-based method of stabilisation in the global resource utilisation. The
problem and solution are illustrated in the context of the electricity domain and energy
management. In EPOS, local software agents (i) control thermostatic devices, (ii) are
organised in a tree overlay, (iii) perform aggregation and local decision-making. The global
goal of EPOS is to perform self-stabilisation by minimising or reversing the deviations in
the global resource utilisation. The main contribution of EPOS is the following:

Hierarchical local coordination achieves emerging convergence of global stabilisation
through local knowledge, local decisions and local interactions of local software agents.

Through extensive evaluation in a simulated environment, EPOS appears to be a highly
effective stabilisation scheme as it shows significant improvement in the stabilisation of
global resource utilisation. This improvement is identified in comparison with greedy se-
lection and to its ability to reverse deviations between two global utilisations. When min-
imising deviations, EPOS appears 36.54%-78.71% more effective than greedy selection.
The reversed deviations function always achieves to correlate two global plans negatively
in the range of ‘-0.37’ to ‘-0.85’. The number of possible plans influences both stabili-
sation functions positively, as the evaluation reveals. In addition, the local deviations do
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influence the global ones. When minimising deviations, the increase of the local deviations
decreases the stabilisation effectiveness linearly whereas, when reversing deviations, it in-
creases the effectiveness of it. Finally, the tree organisation only indicates a small influence
in the collected results, thus further investigation of this issue is part of future work.

These findings reveal that EPOS can be set as a new effective approach for stabilisation
in sustainable power systems beyond the load-shifting schemes that have appeared so far.
This paper also indicates that there is space for a future generic framework that could allow
different stabilisation functions and would unify the systems of consumers and providers
towards the sustainability of the whole power infrastructure.

Future work aims in this direction. Some issues that must be further investigated are the
integration of AETOS, the Adaptive Epidemic Tree Overlay Service (Pournaras, Warnier
& Brazier 2009a), with EPOS to increase fault-tolerance and reliability of the tree overlay
in dynamic environments. Synchronisation and bootstrapping issues will also be investi-
gated. Finally, evaluation in more realistic contexts is a current focus. EPOS implementa-
tion in the AgentScape platform, outlined by Overeinder & Brazier (2004), is in progress.
AgentScape is an asynchronous middleware communication system that supports large-
scale agent-based systems. Data collected by ZigBee metering devices will be fed into
AgentScape for further validation.
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