
An Agent-Based Framework for Developing Distributed Applications

Michel Oey Sander van Splunter Elth Ogston Martijn Warnier Frances M.T. Brazier
Faculty of Technology, Policy and Management

Delft University of Technology
Delft, The Netherlands

Email: {M.A.Oey,S.vanSplunter,E.Ogston,M.E.Warnier,F.M.Brazier}@tudelft.nl

Abstract—The development of agent applications in large-
scale, distributed, open environments is a challenge. This paper
proposes a framework to support development and deployment
of distributed agent applications. The trajectory from design
to real-world deployment starts with simulation and ends with
emulation. The framework is illustrated with AgentScape, a
distributed agent platform.

Keywords-multi-agent systems, agent-based simulation, em-
ulation, development

I. INTRODUCTION

The multi-agent systems paradigm is particularly appli-
cable to applications in large-scale, distributed, open envi-
ronments, such as the energy domain, crisis management,
transportation, and sensor-networks [1], [2], [3]. These en-
vironments are typically characterized by the autonomy
of the entities involved. Distributed identity and integrity
management are crucial, mandating a framework to support
heterogeneity, fault-tolerance and security.

Development of distributed systems and algorithms en-
tails: theoretical description and analysis (design), simula-
tion (simulation), and deployment of a distributed applica-
tion (deployment). This paper focuses on the second phase.

A structured development approach is proposed in which
the second phase is extended to include not only single
system simulation but also emulation. Emulation provides
a means to analyze system behavior in a distributed envi-
ronment, introducing non-determinism, distribution, charac-
teristics of real-life systems. In particular, during emulation
only partial local views of system behavior are possible.

The framework this paper proposes provides a ‘fixed’
interface for multi-agent system design, supporting analysis
of the effects of, for example, different (versions of) algo-
rithms and communication patterns, during system design.
The interface hides the details of the underlying runtime
environment, supporting the transition between simulation
and emulation as often as needed during design.

Incremental development is discussed in more depth in
Section II. Section III presents the framework designed
to support the design of distributed multi-agent systems.
Section IV details the design of the framework, illustrated
for AgentScape as the runtime environment. Section V, in
turn, illustrates the potential of the framework for agent
applications in two different domains. Section VI places the

framework in the context of related work, and Section VII
discusses the results.

II. INCREMENTAL DEVELOPMENT

This paper proposes an incremental approach to multi-
agent system development, distinguishing the following four
phases:

1) design - design of an application.
2) simulation - implementation and testing of a design

by simulation.
3) emulation - refinement and testing of an implemen-

tation by emulation.
4) deployment - refinement, testing and actual deploy-

ment of an implementation in the real-world.
The main motivation behind this incremental approach is
to separate concerns during design, focusing initially on
the correctness of a design, for example, of a distributed
coordination algorithm, abstracting from the practicalities of
large scale, distributed open environments. True distributed,
open agent applications need to deal with practicalities
such as network failures, network latencies, concurrency,
asynchronous communication, dead locks, live locks, non-
determinism, distributed nature, security, replication, fault
tolerance, etc,

Simulations enable designers to focus on the functionality
for which a system is to be designed, e.g., algorithms, and
to simulate a distributed environment in different configu-
rations. Each configuration can test one or more specific
versions of an application, each potentially focusing on a
different aspect, all within a controlled environment. If tests
fail, log-files/traces can be used to identify and fix faults.
Tests can relatively easily be repeated with the same results.

Unfortunately, even though simulation provides a power-
ful tool to develop distributed agent applications, it has its
limitations. By definition, a simulation can only test aspects
of an application that are supported by a specific simulator.
Moreover, the models a specific simulator uses to simulate
real distributed, open environments may not be sufficiently
accurate. Models of non-determinism in distributed, open
environments, for example, are not often realistic. To include
realistic characteristics of distributed open, environments
into system development, the gap between simulation and
real-life deployment of applications, needs to be addressed.



The incremental approach to multi-agent system design
proposed above explicitly includes emulation. Emulation in
a controlled distributed environment during design, with
debugging support, such as logging and snapshots, enables
analysis and testing of system behavior before deployment.
The four development phases are briefly discussed below.

A. Design Phase

In the first phase a design or model of a distributed
multi-agent system, of each of the individual agents and
any interaction between agents is made. For convenience,
this phase is assumed to include all of the steps necessary
to design an application, such as requirements analysis,
functional design, or even a formal verificatio. The outcome
of this phase is a design that describes the architecture of
an application, the agents behavior and their interaction.

B. Simulation Phase

The main goal of the second phase, simulation, is to test
the functionality of a design within a controlled environ-
ment to analyze system behavior without having to address
(practical) issues such as network failures that complicate
development. Typically, during simulation, the behavior of
a distributed agent application is analyzed on a stand-
alone computer system, without actually running an actual
distributed agent platform.

To study different aspects of an application in isolation,
the configuration of the simulation environment can be
changed. For example, to first focus on the correctness of an
application’s communication protocol, the simulation envi-
ronment can first provide (i.e., simulate) a faultless network.
In a later stadium, network failures can be simulated to
test an application’s ability to withstand lost connections
and timeouts. Simulations can also be used to simulate
conditions that are not easily tested in the real environment.

In addition, simulations often provide useful debug/track-
ing facilities. For example, most simulators provide logging
facilities (e.g., the ability to make snapshots) to keep track
of the progress of the application and to analyze errors as
they occur. Some simulators provide the ability to suspend
a running application temporarily to allow inspection of the
state of an application.

C. Emulation Phase

In the emulation phase, an agent application is tested on an
actual agent platform that provides a run-time environment
in which agents can communicate and possibly migrate
between hosts. Emulation comes closer to the environment
in which a system is to be deployed, than simulation.

An emulation can run an agent application on multiple
physical networked machines, testing the application in a
real distributed setting with network latencies and race-
conditions. Often the computer systems used for the (dis-
tributed) emulation are controlled to support debugging. For

example, first a small cluster of machines within a LAN may
be used, after which a larger cluster of physically distributed
machines may be deployed.

Debugging facilities in a distributed environment become
more important, but are often more difficult to implement.
However, for multi-agent systems the agent platform on
which they run can provide support for logging, distributed
measurement, and snapshots to inspect the state of the indi-
vidual agents they host. Suspending a distributed application
for the purpose of analysis is, however, not always an option.

D. Deployment Phase

The final phase in system development is deployment in
the intended open environment. Whereas during the emula-
tion phase machines were under control of the developers,
in the deployment phase, the machines typically are not
under their control. Debugging applications under these
circumstances is typically limited to log messages, which
may be inspected offline if the owners of the systems on
which they are hosted are supportive.

III. SIMULATION/EMULATION FRAMEWORK

This section proposes a framework to support transi-
tioning between these phases, focussing on simulation and
emulation. The purpose of the proposed Simulation/Emula-
tion Framework is to streamline the development of large-
scale, distributed multi-agent system applications, but can
also benefit less ambitious agent applications or distributed
applications in general.

A. Minimal Requirements

The design of the framework is based on the following
minimum requirements:

• provide the ability to focus on the logic of a distributed
agent application, i.e., to isolate its internal models and
algorithms.

• provide support for debugging an application in differ-
ent environments (such as logging, making snapshots,
temporarily suspending an application).

• support the simulation and emulation phases, and, if
possible, deployment of an application.

By isolating the logic of an agent application, this logic can
be designed and evaluated, without having to worry about
details of the environment. Most of the code developed to
evaluate the logic of an agent application can remain intact
when going from one phase to the next. As mentioned
above, debugging is an important part of development.
The framework must provide facilities to help debug a
distributed application, including support for distributed
measurements and/or sampling. Lastly, the framework must
provide different environments for simulation and emulation.
If possible, the framework should support deployment in the
application’s intended environment.



B. Architecture of the Framework

The proposed simulation/emulation framework consists of
three layers (see Figure 1). The top layer is the (distributed)
multi-agent system application itself - the system to be
developed. The middle-layer is the interface defined by
the framework, which provides an application methods to
create and debug a (distributed) simulation/emulation. The
bottom layer, the back-ends, implements the environment.
The framework supports multiple backends, each with its
own characteristics: backends for simulation and backends
for emulation.

3

Simulation Environment

Simulation Interface

Agent Application

1
Backend Backend Backend

2

Figure 1. Overview of the Simulation Framework

C. Interface of the Framework

The interface layer defines a minimum set of functionality
needed for multi-agent system design and development. The
current interface contains the following minimum set of
functionality:

• agents - the basic units in a multi-agent application
• communication - agents communicate by sending and

receiving messages.
• protocols - the logic/algorithms of each agent is defined

as one or more protocols.
• network - the (distributed) network can be configured

to simulate/emulate network characteristics
• logging - each agent can log data for analysis purposes
• backend - backends implement runtime environments

D. Simulation/Emulation Backends

The backends of the framework are the runtime environ-
ments in which applications can run. Backends differ in
their characteristics. One backend, for example, provides a
simulation environment running on a single machine, single
threaded in which communication between agents does not
rely on actual network activity. Another backend provides
a (distributed) emulation environment, running on multiple
machines. All agents run on different machines and run in
parallel, communicating via asynchronous message passing

Backends can be categorized as follows:
1) single machine, single thread
2) single machine, multiple threads
3) multiple machines, multiple threads, lock-step

4) multiple machines, multiple threads, asynchronous

The first type of backend is a very strict simulation envi-
ronment on one machine, with a single thread of execution.
This simulation environment runs each agent sequentially.
Consequently, this simulation can, in principle, provide
deterministic test runs, supporting evaluation of system
behavior, and debugging if unexpected behavior occurs.
This type of backend is typically used only to test basic
correctness of the application in a simple scenario.

The second type of backend also runs on a single ma-
chine, but allows for (pseudo-)concurrency by using multiple
threads of execution. In this type of backend, agents run
in parallel, each agent executing its own program. This
type of simulation environment can provide some insight on
how well a system is capable of handling concurrency. As
the simulation environment still runs on a single machine,
behavior can be analyzed by suspending the simulation
during execution, and by analysis of logs.

The third type of backend runs on multiple (independent)
machines. This environment is closer to emulation than sim-
ulation as the application actually runs on multiple machines.
Agents run in parallel, but some (artificial) synchronicity
can be built into an environment to provide some control
over how the application progresses. For example, agents
can run in lock-step where multiple steps are defined and all
agents synchronize on these steps. Agents execute steps in
parallel, but wait until all agents have finished the current
step, before proceeding to the next step. Often the step from
going from a single-machine, synchronous, agent application
to a multi-machine, asynchronous, application is a challenge.
This lock-step approach provides a way to take the transition
more gradually (see also Section V-A). Unfortunately, as the
application is now distributed over multiple machines, de-
bugging, analyzing unexpected behavior and errors, becomes
more difficult.

The final type of backend provides an environment that
comes closest to a fully distributed agent application. All
agents run independently of each other. There is very little
control over the application. Analysis of behavior and de-
bugging, is mostly done by gathering and analyzing the logs
of the agents.

The main advantage of the framework is that the interface
is well-defined and that transitioning between the different
phases relies solely on availability of an appropriate back-
end. Ideally an application is designed to transition without
change. Unfortunately, this is not always possible. For
example, if a multi-agent system implicitly relies on agents
being run sequentially in some order, it will only run as
expected in the first backend type mentioned above, but not
in the others which introduce parallelism. The algorithms
must change to cope with parallelism.



IV. PROTOTYPE IMPLEMENTATION AND AGENTSCAPE

The current implementation of the framework is written
in Java. As Java is widely supported on different computer-
architectures and operating systems, the framework can also
be applied to different systems. Currently, two backends
have been implemented, corresponding to types 2 and 4 in
Section III-D: a single-machine, multi-threaded simulation
environment and a multi-machine, multi-threaded emulation
environment. The latter backend is built on top of the
AgentScape agent platform. In addition, the framework con-
tains functionality to enable applications to define rounds to
run the latter backend in lock-step (type 3 in Section III-D).

The AgentScape agent platform has been designed to
support the design and deployment of large scale, hetero-
geneous, secure, distributed agent systems [4], [5]. Within
AgentScape, agents are active entities that reside within
locations, communicate with each other and access services.
Agents may migrate from one location to another. The
leading principle in the design of AgentScape is to develop
minimal but sufficient functionality that can be extended to
incorporate new functionality or adopt (new) standards into
the platform.

The simulation/emulation framework currently supports
logging. Each agent has access to its private log where any
type of log message can be recorded. The logs of all dis-
tributed agents can be sorted and filtered and is automatically
gathered into a central point for futher analysis. Creation of
snapshots of the state of agents is currently being developed.

V. USAGE SCENARIOS

This section discusses two typical usage scenarios of the
simulation/emulation framework. The scenarios are from
two different domains and illustrate how the framework
can be used in the design, development, simulation, and
emulation of distributed applications. The two domains
are: distributed energy resource management and distributed
auctions.

A. Distributed Auctions

Combinatorial auctions (CA) are capable of delivering
(semi-)optimal solutions to resource allocation problems.
Gradwell et al. [6] have compared the economic charac-
teristics and the run-time performance of a market-based
approach and a combinatorial auction, when both are ap-
plied to common data sets. The authors have designed and
implemented a Multiple Distributed Auction (MDA) that
consists of multiple Continuous Double Auctions (CDA),
each trading one type of good (resource). The MDA im-
plements a uni-processor agent-based simulation using the
Repast framework [6].

In a follow-up study, the single-machine MDA simulation
was reengineered into a distributed emulation [7]. The
AgentScape multi-agent middleware has been used as the
underlying platform to distribute the entities in the MDA

over multiple hosts and to provide the necessary com-
munication between them. The centralized (Repast-based)
simulation uses a single thread of execution and runs bidding
rounds in each auction sequentially. An emulated approach
(AgentScape-based), however, runs on multiple computers
and runs auctions in parallel. Emulation also makes it
possible to verify that the reengineering is (functionally)
correct: By constraining the asynchronous nature of the
emulation and synchronizing on the notion of rounds (lock-
step) the results of the emulation and (Repast) simulation
can be compared, while still using parallelism within each
round in the emulation.

The reengineering effort shows that going from a cen-
tralized simulation to a distributed emulation is not always
straightforward. The results confirm that algorithms in the
centralized simulation may need to change in a distributed
environment to gain scalability. The experiment furthermore
shows that incremental software development of MAS soft-
ware is worthwhile. The combination of simulation and
emulation allows the development efforts to focus on the
concept of multiple auctions (simulation) while at the same
time identifying the difficulties when actually deploying the
algorithm in a distributed environment (emulation).

VI. RELATED WORK

Agent-based simulations are an integral part of many
research projects. The use of standard simulation and de-
velopment frameworks is, however, surprisingly rare. In
2007, Davidsson et al. [8] surveyed agent-based simulations
reported in the literature. They noted that nearly half of
the reviewed papers did not state how the simulations were
implemented. Of the ones that did, many programs were
written from scratch. A similar study on the 43 full papers
published in IAT 2009 revealed similar conclusions: of the
21 papers that presented multi-agent simulation work, only
five mentioned the use of a previously developed simulator
or framework. The reasons why existing platforms are not
used more extensively are not entirely clear.

A good selection of simulators and development frame-
works does exist. Repast [9] and its successor Repast S are
well-known agent-based modeling and simulation toolkits
for single machine simulations. MACE3J [10] is a Java-
based MAS simulation, integration and development testbed
that runs on single and multi-processor environments. The
Java Agent Framework (JAF) [11] and its associated simu-
lator, Multi Agent System Simulator MASS, lets developers
build and test agents out of components for standard ser-
vices such as scheduling or communication. Farm [12] is
a distributed environment for simulating large-scale multi-
agent systems. MASH [13] is a multi-agent software/hard-
ware simulator, intended for embedded multi-agent systems
(eMAS). ProtoPeer [14] is a prototyping toolkit for devel-
oping peer-to-peer systems that supports both event-driven
simulation and live network deployment. Netbed [15] is a



platform that integrates network simulation, emulation and
the live deployment of wide-area distributed systems.

The Simulation/Emulation framework presented in this
paper explicitly defines an additional phase in system design
and development: an emulation phase, specifically targeted
to evaluation of system behavior in a distributed setting.
The related approaches that also acknowledge the neces-
sity of an emulation phase are not targeted to multi-agent
system development. Hence, these approaches do not offer
feedback on the level of multi-agent system development,
but rather on “lower-level” network issues. The Simula-
tion/Emulation framework offers feedback at the desired
level as the framework is designed specifically for multi-
agent system development. In addition, the framework offers
a backend to AgentScape, enabling simple deployment due
to extensive support for running agent systems in distributed
environments.

VII. DISCUSSION AND CONCLUSIONS

The development of large-scale, distributed agent appli-
cations for open environments requires a careful balance
of a wide range of concerns: a detailed understanding of
the behavior of the abstract algorithms being employed, a
knowledge of effects and costs of operating in a distributed
environment, and an expertise in the performance require-
ments of the application itself. Without a good development
methodology the complexity of this task can quickly become
unmanageable.

Studies rarely consider this development cycle as a whole.
Scientific projects are often confined to the design of abstract
algorithms, and simulations to test their operation. Further
development is left to application designers. This narrow
focus can lead to researchers developing protocols that work
well in theory, but are designed for a setting that does not
match the settings encountered in practice.

The Simulation/Emulation framework presented in this
paper enables a more integrated approach to agent appli-
cation development. The framework enables incremental
development, analysis, and testing using simulation and
emulation to close the gap between design and real world
deployment. The behavior of agent applications can be
specified in a runtime-environment independent way. Dif-
ferent backends enable development and debugging of the
application in different runtime environments: simulation
or emulation. Even though the algorithms may have to
be adapted when changing runtime environments to take
advantage of multi-threading, add deadlock detection/pre-
vention, etc, efforts will not have to be on implementing the
supporting runtime-environment itself.

The use of a common framework provides for a common
code base, so that algorithms under development can easily
be shared between teams. It makes explicit the differences
between development phases, improving the focus of each.
In the framework experts from different areas can better

identify and communicate issues arising from differences in
assumptions or priorities.

A prototype implementation of the framework uses
AgentScape to implement the emulation backend.
AgentScape is a fully fledged agent operating system
on which distributed agent-based applications are deployed.
Changing the runtime environment from a single machine
simulation to a distributed multi-machine emulation was a
matter of changing one line of code. Currently, work is in
progress to use the prototype framework in the distributed
energy resource management scenarios.

ACKNOWLEDGMENT

The authors thank Reinier Timmer and Evangelos
Pournaras for their input on the simulation/emulation frame-
work. This research is in part supported by the NLnet
Foundation http://www.nlnet.nl.

REFERENCES

[1] N. R. Jennings, “Agent-based computing: Promise and perils,”
in 16th Int. Joint Conf. on Artificial Intelligence (IJCAI-99),
1999, pp. 1429–1436.

[2] M. Wooldridge, “Agent-based software engineering,” in IEE
Proceedings on Software Engineering, 1997, pp. 26–37.

[3] E. Pournaras, M. Warnier, and F. M. T. Brazier, “A distributed
agent-based approach to stabilization of global resource uti-
lization,” in the International Conference on Complex, Intel-
ligent and Software Intensive Systems (CISIS’09). IEEE,
March 2009.

[4] IIDS, “AgentScape Agent Middleware,” http:
//www.agentscape.org.

[5] N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and
F. M. T. Brazier, “Supporting internet-scale multi-agent sys-
tems,” Data and Knowledge Engineering, vol. 41, no. 2-3,
pp. 229–245, June 2002.

[6] P. Gradwell and J. Padget, “A comparison of distributed
and centralised agent based bundling systems,” in ICEC
’07: Proceedings of the 9th int. conference on Electronic
commerce. New York, NY, USA: ACM Press, 2007, pp.
25–34.

[7] P. Gradwell, M. A. Oey, R. J. Timmer, F. M. T. Brazier,
and J. Padget, “Engineering large-scale distributed auctions
(short paper),” in Proceedings of the Seventh Int. Conference
on Autonomous Agents and Multiagent Systems (AAMAS).
ACM, May 2008.

[8] P. Davidsson, J. Holmgren, H. Kyhlbäk, D. Mengistu, and
M. Persson, “Applications of Agent Based Simulation,” in
Multi-Agent-Based Simulation VII, ser. LNCS, vol. 4442.
Springer, 2007, pp. 15–27.

[9] M. J. North, N. T. Collier, and J. R. Vos, “Experiences
creating three implementations of the repast agent modeling
toolkit,” ACM Trans. Model. Comput. Simul., vol. 16, no. 1,
pp. 1–25, 2006.



[10] L. Gasser and K. Kakugawa, “Mace3j: fast flexible dis-
tributed simulation of large, large-grain multi-agent systems,”
in AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems.
New York, NY, USA: ACM, 2002, pp. 745–752.

[11] R. Vincent, B. Horling, and V. R. Lesser, “An agent infrastruc-
ture to build and evaluate multi-agent systems: The java agent
framework and multi-abent system simulator,” in Revised
Papers from the International Workshop on Infrastructure for
Multi-Agent Systems. London, UK: Springer-Verlag, 2001,
pp. 102–127.

[12] B. Horling, R. Mailler, and V. Lesser, “Farm: A Scalable
Environment for Multi-Agent Development and Evaluation,”
in Advances in Software Engineering for Multi-Agent Systems,
A. G. C. Lucena, J. C. A. Romanovsky, and P. Alencar, Eds.
Springer-Verlag, Berlin, February 2004, pp. 220–237.

[13] J.-P. Jamont and M. Occello, “A multiagent tool to simulate
hybrid real/virtual embedded agent societies,” in WI-IAT
’09: Proceedings of the 2009 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent
Technology. Washington, DC, USA: IEEE Computer Society,
2009, pp. 501–504.

[14] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer,
“Protopeer: a p2p toolkit bridging the gap between simulation
and live deployement,” in Simutools ’09: Proceedings of
the 2nd International Conference on Simulation Tools and
Techniques. Brussels, Belgium: ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications
Engineering), 2009, pp. 1–9.

[15] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An
integrated experimental environment for distributed systems
and networks,” Boston, MA, Dec. 2002, pp. 255–270.


