
Facilitating Group-based Adaptation of Shared
Workspaces using a Multi-Agent System

Dirk Veiel
FernUniversität in Hagen,

Department of Mathematics
and Computer Science,
58084 Hagen, Germany

dirk.veiel@fernuni-
hagen.de

Stephan Lukosch
Delft University of

Technology, Faculty of
Technology, Policy, and

Management, Jaffalaan 5,
2628 BX Delft, The

Netherlands
s.g.lukosch@tudelft.nl

Martijn Warnier
Delft University of

Technology, Faculty of
Technology, Policy, and

Management, Jaffalaan 5,
2628 BX Delft, The

Netherlands
m.e.warnier@tudelft.nl

Michel Oey
Delft University of

Technology, Faculty of
Technology, Policy, and

Management, Jaffalaan 5,
2628 BX Delft, The

Netherlands
m.a.oey@tudelft.nl

Jörg M. Haake
FernUniversität in Hagen,

Department of Mathematics
and Computer Science,
58084 Hagen, Germany
joerg.haake@fernuni-

hagen.de

ABSTRACT
In this paper we present an agent-based approach to facili-
tate context-based adaptations using context information of
a group of users. To minimize the effort to collect all rele-
vant information of the current collaboration situation, and
the amount of data to be kept, we propose a decentralized,
agent-based approach that keeps track of the contextualized
state.

Author Keywords
Shared workspaces, adaptation, group context, context-based
adaptation, agent, multi-agent system

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

INTRODUCTION
In modern organizations work is to a large extent collabora-
tive. Especially knowledge work is increasingly performed
by distributed teams cooperating across large, often global
distances. While collaboration has become ubiquitous, new
challenges occurred that need to be addressed for suppor-
ting it effectively. This is especially true when looking at
cooperation support systems. These challenges arise from
a variety of features that are characteristic for collaborati-
on. Among other aspects, collaborative tasks are often ill-

Submitted for review to CAICOLL 2010.

structured, emerge in the course of the collaborative process,
and need to respond flexibly to changing goals or situations.
Users participating in a collaborative project may find them-
selves in different physical environments or settings and may
use a variety of different devices. Also, users are often invol-
ved in more than one project at a time, raising the need for
frequent task or tool switches and for rapid cognitive adjust-
ments to the subject at hand.

A shared work environment dealing with the required fle-
xibility, offering the different tools in an integrated fashion,
and supporting context-based adaptation that does not only
take a single user’s context into account but the context of a
group or team, can be the solution for these changing needs.
Using a service-oriented architecture enables developers and
providers of shared work environments to extend existing
systems by adding, replacing, or (re-)configuring services
and the corresponding UIs offered by different service pro-
viders. Usually these actions require manual changes and
they can not be applied to a running system without a (re-
)initialization. Context-adaptive systems can bridge this gap
by supporting (re-)configuration of the system at runtime, by
starting and stopping required services and the correspon-
ding UIs, by creating (e.g., based on templates) and opening
artifacts to be produced in the current situation. Each of the-
se cases take the current context of the system and the users
into account. E.g., as soon as the system recognizes that too
many people try to edit a document synchronously, it may
change the concurrency control strategy from optimistic to
pessimistic.

To be able to recognize these different collaboration situa-
tions, the system has to store relevant context information.
Relevant means that the system needs at least this informati-
on to be able to detect the occurrence of a specified collabo-

1



ration situation at runtime. When the system has to be able
to detect many of these situations at the same time, it has
to keep track of almost every interaction of the users with
the system. This tracking process can either be implemented
on the client or on the server-side. In either way, mapping
these interactions to the context (the state layer in [5]) leads
to an tremendous amount of data to be managed. In a dis-
tributed setting (i.e. when clients track the interactions) the
collected data is spread over all clients that participate in the
global collaboration. A problem may arise as soon as a group
context representation is needed that requires an integration
of different user context representations. Usually, this step
is necessary to create the current contextualized state of the
group. Such an integration leads to enormous communicati-
on activities on the underlying network and may lead to con-
flicts while merging the different context representations.

In the following, we first describe our approach to address
the above issues, then discuss related approaches, before we
conclude.

APPROACH
We use the four-layered framework for context-based ad-
aptations and the collaboration domain model for descri-
bing collaboration environments and collaborative situati-
ons as described in [5] to manage the context and handle
context-based adaptations. The domain model and its usage
for context-based adaptations is described in [13]. To mi-
nimize the effort to collect all relevant information of the
current collaboration situation, and the amount of data to be
kept, we propose a decentralized, agent-based approach (cf.
Figure 1) that only keeps track of the contextualized state.
We use AgentScape [9] – a multi-agent platform – to im-
plement two different categories of agents: user and group
agents.

Conceptual Architecture

Figure 1. Conceptual architecture

Using this agent-based approach we can minimize the a-
mount of data we have to track and keep as the contextuali-

zed state. Tracking or sensing the relevant context informati-
on can be done on that side of the system (either at the client
or the server) where the information is available. Therefore
we split the agents into user and group agents. While crea-
ting the group’s contextualized state the group agents only
acquire information relevant in the current situation, i.e. only
information that is required for monitoring adaptation rules.

We can integrate applications using Application Agents that
run outside our main system (CONTact). Such applications
can communicate with the application agent to provide rele-
vant context information. This approach supports the requi-
red flexibility of an open collaborative and context-adaptive
workspace system.

Furthermore, we are able to create a virtual presence of each
user. This can be used, e.g., in negotiations about schedu-
les that affect the corresponding user, to support immediate
response to urgent tasks, or to manage privacy issues in re-
lation of the context information that needs to be shared.

Group agents
Group agents support means of communication to correspon-
ding user agents, to collect and integrate the user’s contex-
tualized state into one of the group (Group Context Agent),
retrieve and monitor adaptation rules using the current con-
textualized state of its group, and send adaptation actions
(Group Adaptation Agent) to the corresponding user agents
(User Adaptation Agent). They use a repository to share and
retrieve possible adaptation rules. When necessary (i.e. an
adaptation requires additional context information from the
server-side), the Group Sensing Agent subscribes to relevant
events the Event Dispatcher supports, and gets notified as
soon as these events occur. Thereby, we can collect infor-
mation that affects the group context immediately and inde-
pendent of the user’s context. Adaptations that need to be
handled by the OSGi Server itself (like (re-)configuration of
services, dynamic service orchestration or choreography) are
encapsulated in events and sent through the Event Dispat-
cher) to the (Action Interpreter) that receives, extracts the
adaptation actions from the event, and executes them.

User agents
A user agent collects relevant context information (User Sen-
sing Agent), integrates them into their current contextuali-
zed state, handles the user’s profile / preferences, and deals
with specific privacy issues of the user (User Context Agent).
After the (User Adaptation Agent) received adaptation acti-
ons from the Group Adaptation Agent it deals with possibly
conflicting adaptations, and applies the determined adaptati-
on actions to the client by using the Adaptation Component.
The Application Agent offers context information about the
application itself. This enables other agents to collect context
information directly from it without asking the correspon-
ding application itself. Useful information that affects pos-
sible adaptations are the context concept it belongs to (e.g.,
Chat, RemoteFieldOfVision), the adaptation actions that can
be applied, and the context concepts of awareness functiona-
lity the application may offer. After the Application Wrapper
has started/injected the Application Agent, both can check

2



whether the context information the Application Agent of-
fers, match the current setting of the application itself.

AgentScape
The multi-agent platform AgentScape supports agents as au-
tonomous processes. A uniform middleware layer provides
an agent run-time that is available at numerous heteroge-
neous platforms. Agents in AgentScape can communicate
with other agents, can access external services and can be
mobile, i.e. are able to migrate between hosts.

The guiding principle in the design of the AgentScape midd-
leware has been to develop a minimal but sufficient open
agent platform that can be extended to incorporate new func-
tionality or adopt (new) standards into the platform. This
design principle has resulted in a multi-layered architecture
with (i) a small middleware kernel, called the AgentSca-
pe Operating System (AOS), that implements basic mecha-
nisms such as communication, (ii) high-level middleware
services that implement agent platform specific functiona-
lity and policies and (iii) external directory services. This
approach simplified the design of the kernel and has made it
less vulnerable to errors or improper functioning. The cur-
rent set of middleware services includes agent servers, host
managers, location managers, a look-up service and a web
service gateway.

DISCUSSION
In this section we briefly review similar approaches, and
point out similarities and differences with our approach.

The most prominent examples for context-based adaptation
focus on single users and consider location as most relevant
context information (e.g., [12, 1, 6, 7]) or focus on learner
profiles (cf. ITS). All of these systems are able to identify
situations requiring adaptation for a single user. COLER [4]
provides a software coach for improving collaboration, thus
being able to identify adaptation needs during collaborative
software development. The Semantic Workspace Organizer
(SWO) [11] is an extension of BSCW. It analyzes user acti-
vities and textual documents inside the shared workspace to
suggest appropriate locations for new document upload and
for document search.

CoBrA [2, 3] is an agent-based architecture that helps agents
to acquire, reason about and share context knowledge. This
architecture uses a broker agent that maintains and manages
the shared context model. While our approach focusses on
collecting, creating, and using the contextualized state of a
group of users, they use one broker agent for all computing
entities (e.g., PCs, PDAs) in a specified space.

ECOSPACE [10, 8, 14] uses a context model of a group that
represents the characteristics related to the users’ environ-
ment that may affect the way a collaborative activity of any
type is executed. The system uses the context model in its
dynamic service composition phase at runtime to select ap-
propriate services for service composition. But the context
model has not been published yet.

CONCLUSION
In this paper we presented our agent-based approach to faci-
litate context-based adaptations using context information of
a group of users. We use AgentScape – a multi-agent plat-
form – to implement agents that create the contextualized
state, and monitor and apply adaptations.

Currently, we are focusing on creating a language which al-
lows end-users to write adaptation rules and introduce new
context concepts.

REFERENCES
1. G. D. Abowd, C. G. Atkeson, J. Hong, S. Long,

R. Kooper, and M. Pinkerton. Cyberguide: a mobile
context-aware tour guide. Wireless Networks,
3(5):421–433, 1997.

2. H. Chen, T. W. Finin, and A. Joshi. Using owl in a
pervasive computing broker. In S. Cranefield, T. W.
Finin, V. A. M. Tamma, and S. Willmott, editors,
Proceedings of the Workshop on Ontologies in Agent
Systems (OAS 2003), pages 9–16, 2003.

3. H. Chen, T. W. Finin, and A. Joshi. Semantic web in
the context broker architecture. In Proceedings of the
Second IEEE International Conference on Pervasive
Computing and Communications (PerCom 2004),
pages 277–286. IEEE Computer Society, 2004.

4. M. de los Angeles Constantino-González and D. D.
Suthers. Automated coaching of collaboration based on
workspace analysis: Evaluation and implications for
future learning environments. In Proceedings of the
36th Hawai‘i International Conference on the System
Sciences (HICSS-36). IEEE Press, 2003.

5. J. M. Haake, T. Hussein, B. Joop, S. Lukosch, D. Veiel,
and J. Ziegler. Context modeling for adaptive
collaboration. Technical Report 2/2009, Universitt
Duisburg-Essen, jul 2009.

6. T. Kindberg, J. Barton, J. Morgan, G. Becker,
D. Caswell, P. Debaty, G. Gopal, M. Frid, V. Krishnan,
H. Morris, J. Schettino, B. Serra, and M. Spasojevic.
People, places, things: web presence for the real world.
Mobile Network Applications, 7(5):365–376, 2002.

7. O. Lehmann, M. Bauer, C. Becker, and D. Nicklas.
From home to world - supporting context-aware
applications through world models. In PerCom, pages
297–308, 2004.

8. M. A. Martnez-Carreras, A. Ruiz-Martnez,
F. Gmez-Skarmeta, and W. Prinz. Designing a generic
collaborative working environment. In IEEE
International Conference on Web Services (ICWS
2007), pages 1080–1087, 2007.

9. B. J. Overeinder and F. M. T. Brazier. Scalable
Middleware Environment for Agent-Based Internet
Applications. In Proceedings of the Workshop on
State-of-the-Art in Scientific Computing (PARA’04),
volume 3732 of LNCS, pages 675–679. Springer, June
2004.

3



10. W. Prinz, H. Loh, M. Pallot, H. Schaffers, A. Skarmeta,
and S. Decker. ECOSPACE – towards an integrated
collaboration space for eprofessionals. In International
Conference on Collaborative Computing: Networking,
Applications and Worksharing, pages 39–45, 2006.

11. W. Prinz and B. Zaman. Proactive support for the
organization of shared workspaces using activity
patterns and content analysis. In GROUP ’05:
Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work,
pages 246–255. ACM, New York, NY, USA, 2005.

12. B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In First Annual Workshop on
Mobile Computing Systems and Applications
(WMCSA), Dec. 1994.

13. D. Veiel, J. M. Haake, and S. Lukosch. Extending a
shared workspace environment with context-based
adaptations. In Groupware: Design, Implementation,
and Use: 15th International Workshop, CRIWG 2009,
Peso da Rgua, Douro, Portugal, September 13-17,
2009, LNCS 5784, pages 174–181. Springer-Verlag
Berlin Heidelberg, sep 2009.

14. M. Vonrueden and W. Prinz. Distributed document
contexts in cooperation systems. In B. N. Kokinov,
D. C. Richardson, T. Roth-Berghofer, and L. Vieu,
editors, Modeling and Using Context, 6th International
and Interdisciplinary Conference, CONTEXT 2007,
LNCS 4635, pages 507–516. Springer-Verlag Berlin
Heidelberg, 2007.

4


	Introduction
	Approach
	Conceptual Architecture
	Group agents
	User agents
	AgentScape

	Discussion
	Conclusion
	REFERENCES 

