
A multi-layered semantics-ready sensor architecture

Thomas Harman
Department of Computer

Science
University of Bath

Bath, BA2 7AY, UK
t.p.harman@bath.ac.uk

Julian Padget
Department of Computer

Science
University of Bath

Bath, BA2 7AY, UK
jap@cs.bath.ac.uk

Martijn Warnier
Department of Computer

Science
Vrije Universiteit
Amsterdam, NL

warnier@cs.vu.nl

ABSTRACT
There is an intrinsic tension between sensor systems and multi-
agent systems that comes down to the trade-off between cost and
value:1 the agents want as much knowledge of their environment as
possible, while the sensors are rightly protective of their often very
limited resources that enable sensing and transmission. The archi-
tecture and implementation that we present here aims to provide
sufficient flexibility for the cohabitation of both classes—where
class is a relative term—of components through a policy-aware
framework that permits the construction of “sensors” at whatever
level of abstraction is regarded as appropriate by the designer. There
are many sensor architectures available, nevertheless we believe
there is some novelty in the approach we present here in terms of
systems engineering, deriving mainly from the principled design
of Agentscape upon which we are building, such that the notable
features are modularity—there is a high degree of separation of
concerns—extensibility—leading to relative ease of integration of
different sensor infrastructures—and scalability—as a result of the
distributed architecture that Agentscape provides. In addition, our
choice of RDF as the initial database format has positive practical
implications for the integration of supported sensor networks with
semantic processing mechanisms.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Mul-
tiagent systems

General Terms
Design, Management, Measurement

Keywords
multi-agent systems, sensor networks, middleware

1. INTRODUCTION
1Some readers may recall the criticism of Lisp programmers know-
ing the value of everything and the cost of nothing: the same might
be said of MAS.

ATSN09 at AAMAS09 Organizers:... Date:...

Typical middleware systems for sensor networks assume that sen-
sors are homogeneous and have limited resources to consume. As
others have observed [2], this assumption seems more and more
misplaced. New types of sensors that use different technologies
appear all the time and combination and aggregation of data from
different sensors can be very useful.

Multi-Agent Systems (MAS) form one of the most promising con-
tributions to the sensor networks domain. The ability to reason
about their environment and use sensor data in a autonomous self-
aware manner makes the agents especially suitable for sensor based
applications. However, most of the current research in this area fo-
cuses either on agents embedded in sensors [1] or on more high-
level applications such as routing information between sensors or
sensor sensing strategies [5]—typically using some out-of-the-box
sensor middleware and building the agent-based application on top.

This paper proposes a new multi-layered semantics-ready sensor
architecture that addresses both issues. The main idea is to extend
a multi-agent platform, AgentScape, with generic services for ac-
cessing sensors and a generic database service for storing the sensor
data. Both services form part of the middleware and support multi-
ple sensors types and multiple database types, that are in turn freely
accessible to user agents. The architecture as a whole provides a
uniform agent-based sensor middleware to support a wide range of
sensor based research. In particular, it allows the programmer to fo-
cus on the detail programming of particular sensor types, but also
the high level programming of sensor based applications [8], in-
cluding the creation of virtual sensors, that synthesize signals from
arbitrary combinations of other (stored) sensor data. AgentScape’s
connection to web-services and thus grid computing forms an addi-
tional motivation for this work, enabling a single platform to span
the gamut of computing applications from sensor data-collection
through to the processing of large data-sets.

The remainder of this paper is organized as follows: the next sec-
tion introduces AgentScape, Section 3 describes the architecture
of the sensor support components and Section 4 outlines our ini-
tial demonstrator and application domains. The paper ends with a
discussion and conclusions.

2. AGENTSCAPE
The multi-agent platform AgentScape supports agents as autonomous
processes. A uniform middleware layer provides an agent run-time
that is available at numerous heterogeneous platforms.

Within AgentScape, agents are active entities that reside within
locations, and services are external software systems accessed by

AgentScape
middleware

AgentScape
middlewaremiddleware

AgentScape AgentScape
middleware

Mac OS X

AgentScape
middleware

Solaris

L
o

c
a

ti
o

n
 B

service

agent

W2K/XPLinux Solaris

L
o

c
a

ti
o

n
 A

Figure 1: Conceptual model of AgentScape middleware

agents hosted by the AgentScape middleware (see Figure 1). Agents
in AgentScape can communicate with other agents and can access
services. Agents may migrate from one location to another.

All agent operations are modulo authorization and security precau-
tions. For example, an agent may have to have the appropriate
credentials (ownership, authorization, access to resources, and so
on) to access a specific service, possibly for a limited time period.

The guiding principle in the design of the AgentScape middle-
ware has been to develop a minimal but sufficient open agent plat-
form that can be extended to incorporate new functionality or adopt
(new) standards into the platform. This design principle has re-
sulted in a multi-layered architecture with (i) a small middleware
kernel, called the AgentScape Operating System (AOS) kernel, that
implements basic mechanisms, (ii) high-level middleware services
that implement agent platform specific functionality and policies
(see Figure 2) and (iii) external directory services. This approach
simplified the design of the kernel and has made it less vulnerable
to errors or improper functioning. The current set of middleware
services includes agent servers, host managers, location managers,
a look-up service and a web service gateway.

AgentScape’s middleware services implement the agent specific
functionality. The current set of middleware services include:

• Location Manager: Every location has a Location Manager,
which runs on one of the hosts within that location. This
process manages that location’s hosts. Locations typically
are formed by hosts that belong to one single administrative
domain.

• Host Manager: Every host (typically, one physical machine)
runs a Host Manager. This process is responsible for manag-
ing the middleware components running on that host. It also
regulates and guards access to its resources.

• Agent Server: An Agent-Server provides a run-time envi-
ronment for agents. Each host can run one or more Agent-
Servers to host agents supporting e.g. different programming
languages.

• Web Service Gateway: The Web Service Gateway enables
agents to communicate with web services using the SOAP/
XML protocol [6].

• Look-up Server: This external (to the middleware) service
keeps track of the current location of agents. Strictly speak-
ing, this service is not part of the AgentScape middleware as
it can be run as a stand-alone application. Two versions exist,
a centralized, unsecured version and a decentralized secured
one.

Agent servers provide agent access to the AgentScape middleware
(see Figure 2). AgentScape supports multiple (simultaneous) code
bases through the provision of multiple agent servers, at least one
per code base. From a security perspective, it is important to note
that agent servers ‘sandbox’ agents.

The location manager is the coordinating entity in an AgentScape
location (managing one or more hosts in its location). Note that for

AOS kernel

Host
Manager

Location
Manager

Web
Service
Gateway

Agent
Server

Sensor
Service

Database
Service

Sensor
database

Physical
Sensor
Agent 1

Physical
Sensor
Agent 2

Virtual
Sensor
Agent 1

sensor
interface

sensor
interface

raw
se

ns
or

da
ta

to

da
tab

as
e via

se
ns

or
ag

en
t

sensor data
out

(re-)interpreted
sensor data

in

Grey items: original Agentscape architecture
Black items: extensions for sensors and example dataflows

User Agent API

Service Agent API

Figure 2: Agentscape sensor architecture

fault tolerance a location manager may be replicated. Agent cre-
ation, migration, and all policy related issues relevant in the con-
text of a location, are managed or coordinated by the location man-
ager. The host manager manages and coordinates activities on a
host. The host manager acts as the local representative of the loca-
tion manager, but is also responsible for local (at the host) resource
access and management. The policies and mechanisms of the loca-
tion and host manager infrastructure are based on negotiation and
service level agreements [4].

3. SENSOR ARCHITECTURE
Scalability is the fundamental contribution that the Agentscape mid-
dleware has the potential to bring to sensor architectures. This may
not sound entirely novel, so some justification is due. As Section 2
has described, Agentscape is a middleware and one which has been
designed for modularity and extensibility, so that the designer can
choose how sophisticated to make the agents: they can be ordinary
Java programs communicating through the Agentscape API or (for
example) BDI agents implemented via the Jason library [9]. Other
agent architectures may be interfaced in a similar way. More im-
portant, for the purpose of this article, is the capacity for adding
interfaces—in effect stretching the middleware both upwards, to-
wards grid resources (not covered further here) and downwards,
towards mobile platforms (not covered further here) and sensors.

Our goals in extending Agentscape to work with sensors are:

1. To provide a generic sensor interface for agents to access, for
example, bluetooth, ZigBee, RFID

2. To provide a generic database interface for agents to store
sensor data, fine-tuned by sensor policies that control how
much and what data is stored.

3. To allow agents to use the sensor data in a uniform manner
and publish it or use it in other ways, for example in combi-
nation with web-services.

3.1 Sensor and Database Services

AgentScape’s modular design enables the straightforward addition
of new services. To support the construction of with sensor net-
works two services have been added: (i) a generic sensor service
and (ii) a database service. Together, these services provide a uni-
form interface for agents.

The sensor service acts as a proxy and its purpose is to provide
access to multiple sensor infrastructures, so that subsequently dif-
ferent types of physical sensors can be registered with the sensor
service. The sensor service provides a minimal uniform interface
to agents with the possibility of additional functionality on a per
sensor type basis. This makes it relatively straightforward to re-use
agents with different sensor types.

Similarly, the database service provides a uniform interface that
can access different database back-ends. The database service also
enforces the policies that agents can define per sensor type or, if
necessary, per sensor. Policies are further detailed in Section 3.2
below. Figure 2 shows how the sensor architecture extensions are
integrated into AgentScape.

3.2 Sensor Agents
Agents can access individual sensors through the sensor service.
After the agent provides the service with a URI of the sensor, an in-
terface belonging to the specific sensor type, including the generic
sensor interface, is returned. Thus, sensors are individually ac-
cessed on a per URI basis.

The agent can at this point chose to use the sensor data directly, for
example by publishing it on a web-site, or it can store the sensor
data in a database (see the example data-flows in Figure 2. If the
data is stored in a database, using the database service, an addi-
tional sensor policy is required. This policy states how much data
of one sensor instance is stored and/or for what time period. Such
policies might be specified, for example, as the most recent 10MB
of a stream, the last 100 samples, or all data generated over a week
by one sensor. In addition it is possible to store all data generated
by a sensor indefinitely, though, depending on the sensor type, this
can be a large amount of data. The specification of this policy is the
responsibility of the physical or logical sensor agent (see Figure 2),
while the implementation of the policy is the responsibility of the
relevant database.

In other circumstances, it may be desirable to collect samples over a
period of time, in which case it is possible to set up a direct connec-
tion between the sensor service and database service. This speeds-
up the data storing process by circumventing the agent, once the
connection between both services is established. At some later
time the agent can send a ‘stop’ message to the sensor service to
halt data-collection for a specific sensor.

3.3 Scalable Data Collection and Usage
A key attraction for extending AgentScape with sensor-network
middleware is the scalability that is an intrinsic aspect of Agent-
Scape. The database service makes this point especially clear. This
service acts as a front-end to various databases and typically, one
database service is instantiated per AgentScape location. However,
one AgentScape location can also run multiple databases, both by
type and instance. Agents can also access the database services that
run at other locations. In particular, this means that one database
can be used for multiple sensor networks, deployed around the
world. Or, conversely, each location may use its own database ser-
vice, possibly interfacing with multiple databases. Additionally,

data may be aggregated with some delay at one location, combin-
ing data from numerous (physical) locations.

3.4 Technical details
At this stage, entirely because of device availability, we have imple-
mented only a bluetooth interface, although the two devices chosen
have different characteristics, in that one generates a stream of data,
while the other supplies data on request, thus exercising two of the
standard modes in which sensors typically supply data. The two
physical devices in question are a Wii-mote and a GPS.

Likewise, at this point in development, we had to make a choice
for sensor data storage and have adopted the JRDF package[3] that
provides an API to a triple store, deriving features from Jena and
Sesame, amongst others. The primary motivations for this choice
are (i) the flexibility afforded by the RDF triple structure and (ii) the
fact that a triple store naturally accommodates semantic annotation.
In this way we believe we are putting minimal constraints on down-
stream consumers (agents) of the data collected.

Of course, it is to be expected that the platform can support the con-
nection of more than one sensor of the same kind, so for this reason
we identify each data source by an unique URI. Consequently, the
data that is stored in the triple store takes the form of:

Wii-mote triples
(uri:wiimote1, hasWiiData, uri:data1)
(uri:data1, hasDate, <date>)
(uri:data1, hasButtonPressed, buttonX)
GPS triples
(uri:gpsSensor1, hasGpsData, uri:data1)
(uri:data1, hasLatitude,<degrees+minutes+seconds>)

As illustrated in Figure 2, one dataflow passes from the sensor to
the generic sensor interface, through the Agentscape kernel and the
agent server to be delivered to the user-level sensor agent that is re-
sponsible for the particular sensor. A standard behaviour is then for
the sensor agent to store that data, via the Agentscape kernel and
the generic database interface to the triple store. In this way, raw
sensor data is captured in the short term for subsequent processing.
Clearly in the case of a source like the Wii-mote, the data needs
cleaning in order to identify a smooth gestural path (for example).
Whether this kind of task is the responsibility of the sensor agent
itself or is delegated to a downstream “smoothing” agent is an issue
for the programmer to decide: the mechanisms are available either
to augment the sensor agent and only store smoothed data, or al-
ternatively another user agent—see the virtual sensor data path in
Figure 2—may subscribe to the Wii-mote feed and then publish a
smoothed feed to a database—perhaps the one from which it ob-
tained the data or another, as desired.

It is often impractical to keep data for an unlimited period in the
triple store. If long-term preservation is required, then alternative
measures must be taken, but in many circumstances, and almost
certainly in the case of the two devices with which we are currently
working, data need only be retained in the short-term. This raises
the question of where that decision is made and where that decision
is implemented. We regard data retention as a policy issue as far
as the sensor agent is concerned: it is responsible for specifying for
how long (time period), or how much of (sample size) the data shall
be retained. But policy implementation is a matter for the storage
mechanism and so it is the particular database interface that carries
out the necessary deletion operation.

3.5 Data semantics
A relational database would have been an obvious choice for data
storage and has indeed been selected by several of the published
sensor architectures. However, we felt that although it would be
straightforward to develop (or replicate) a schema to fit the pur-
pose of sensor data collection and querying, it would almost cer-
tainly compromise consumers of the data, whose intentions we can-
not foresee. Clearly such consumers could create new schema for
their needs in the same database or extract data and store it another
database structured for their purpose. None of these scenarios is
ruled out, but the one-size-fits-all aspect of RDF means that con-
sumer agents need do nothing more than query using languages
that are seeing increasing up-take (in this case SPARQL) and assert
new triples, perhaps defining their own predicates and new object
datatypes. Furthermore, by choosing this representation, arbitrary
semantic annotations are facilitated, as well as enabling interaction
with external semantic web tools.

4. USING SENSOR DATA
Using AgentScape as a uniform means to collect sensor data pro-
vides some clear advantages, as we have outlined above. A further
advantage is that (other) agents can directly access the collected
data. Where the previous section focused mostly on the underlying
middleware infrastructure, this section explores the possibilities for
agent-based usage of sensor data.

Agents can access the database service to obtain sensor data. This
sensor data can then be used directly in an agent-based application,
published via a web service, combined with other web-services to
form a new web based application [10], or combined with other
sensor data to realize outputs from a new virtual sensor.

This is in particular relevant for the ALIVE project [7]. ALIVE
aims to apply organizational theory to the design and implemen-
tation of software systems. The main focus of the project is to
create complex systems based on the composition of (existing) ser-
vices, through the addition of levels of abstraction. The advantage
of added levels of abstraction to the design process of systems is
two-fold: (i) it is often more intuitive to think in organizational
structures and interactions when designing complex interactions for
services, and the addition of the layers of abstraction allows for a
gradual (fluid) transition from the system as foreseen to the actual
implementation; (ii) when changes happen in the environment (for
example, specific services become unavailable) the added levels of
abstraction act as an explicit representation of the conceptual steps
made at design, thus giving additional information on why certain
interactions are as they are, that enables the system to dynamically
cope with the changes. A sensor network enabled AgentScape can
be regarded as a (simplified) version of such a system. In this view
the low-level sensor framework can be seen as a first abstraction
layer, on top of which reside the sensor and database services. The
agents form the next level of abstraction and the actual, possibly
web service based, application forms the top level in this view.

5. DISCUSSION AND CONCLUSIONS
This paper describes a multi-layered semantics-ready sensor archi-
tecture based on the AgentScape middleware. The main benefits of
the proposed system are (i) a generic sensor interface for agents to
access, (ii) a generic database interface through which agents may
store sensor data, (iii) means for agents to access and add sensor
data in a uniform manner and (iv) a scalable framework for access-
ing large-scale sensor networks, over different physical locations.

The system is currently in the implementation stage. Basic support
for two bluetooth type sensors: a GPS and a Nintendo Wii-mote
(www.nintendo.com) and one database back-end, a RDF store,
has been completed. In the short term we will be developing a Zig-
Bee interface for the purpose of interacting with energy monitoring
sensors and an IEEE802.15.4 interface to work with high frequency
structural monitoring sensors. RFID is in our medium term plans,
which in conjunction with the J2ME Agentscape deployment cur-
rently under development, will enable us to collect data via a mo-
bile device and either store locally or propagate to other platforms
over networks, when/where connectivity permits. On the storage
side we will be adding a conventional relational database to the
database service agent.

Acknowledgements
This work is partially supported by the ALIVE project (FP7-IST-
215890, http://www.ist-alive.eu) and the NLnet Foun-
dation (http://www.nlnet.nl).

6. REFERENCES
[1] C. Fok, G. Roman, and C. Lu. Mobile agent middleware for

sensor networks: an application case study. In Information
Processing in Sensor Networks, 2005. IPSN 2005. Fourth
International Symposium on, pages 382–387, 2005.

[2] K. Henricksen and R. Robinson. A survey of middleware for
sensor networks: State-of-the-art and future directions.
Proceedings of the international workshop on Middleware
for sensor networks., November 28-28, 2006.

[3] Jrdf. jrdf.sourceforge.net, retrieved 20090215.
Java Resource Description Framework API for graphs,
object persistence and querying.

[4] D. G. A. Mobach, B. J. Overeinder, and F. M. T. Brazier.
WS-Agreement based resource negotiation framework for
mobile agents. Scalable Computing: Practice and
Experience, 7(1):23–36, 2006.

[5] M.Vinyals, J. Rodriguez-Aguilar, and J. Cerquides. A survey
on sensor networks from a multi agent perspective. 2th
International Workshop on Agent Technology for Sensor
Networks (ATSN-08), 2008.

[6] B. J. Overeinder, P. D. Verkaik, and F. M. T. Brazier. Web
service access management for integration with agent
systems. In Proceedings of 23rd Annual ACM Symposium on
Applied Computing, Mobile Agents and Systems Track, 2008.

[7] T. B. Quillinan, F. M. T. Brazier, H. M. Aldewereld,
F. Dignum, V. Dignum, L. Penserini, and N. J. E.
Wijngaards. Developing Agent-based Organizational Models
for Crisis Management. In Proceedings of the 8th
International Conference on Autonomous Agents and
Multiagent Systems (Industrial Track), May 2009.

[8] R. Sugihara and R. K. Gupta. Programming models for
sensor networks: A survey. ACM Trans. Sen. Netw.,
4(2):1–29, 2008.

[9] R. C. van het Schip. Integrating Jason into AgentScape -
Joining BDI-theory with Agent Technology practice.
Master’s thesis, Vrije Universiteit Amsterdam, October 2008.

[10] S. van Splunter, F. M. T. Brazier, J. Padget, and O. Rana.
Dynamic service reconfiguration and enactment using an
open matching architecure. In Proceedings of the
International Conference on Agents and Artificial
Intelligence, Porto, Portugal, January 2009.

