AREA: an Automatic Runtime Evolutionary Adaptation mechanism for
Creating Self-Adaptation Algorithms in Wireless Networks

Qingzhi Liu1’2, Stefan Dulmanl, Martijn Warnier?
1. Embedded Software, EEMCS Faculty, Delft University of Technology, The Netherlands
2. System Engineering, TPM Faculty, Delft University of Technology, The Netherlands
{q.liu-1, s.o.dulman, m.e.warnier} @tudelft.nl

Abstract—The application requirements and the spatial envi-
ronments of wireless networks continue to become more and more
complex and changeable. Most existing algorithms for wireless
sensor networks are designed with a specific type of environment
in mind. While such algorithms work well in the environment
they have been designed for, once the environment changes
beyond the domain in which the design can adapt, the algorithms
can hardly work properly. This paper proposes a novel design
mechanism called the automatic runtime evolutionary adaptation
(AREA) mechanism. It has been designed to automatically adapt,
during runtime, to the variation of environments in wireless
networks. This adaption is realized by self-creating and self-
evolving algorithms: AREA allows the created algorithm not
only to be adaptive but also to evolve to other adaptive abilities
according to the variation of the application requirement and
the spatial environment. The AREA mechanism is validated by
applying it to a data aggregation example in wireless networks.
This shows that the mechanism can adapt to the changing
environments and outperform the other strategies.

I. INTRODUCTION

Nowadays an increasing amount of research is focused on
various wireless network applications, such as environment
monitoring [1], traffic control [2] or navigation localization [3].
As the application complexity increases, more new research
requirements are involved. However, most existing algorithms
are designed with a specific type of (spatial) environment in
mind, such as assumed bandwidth, node density, etc. Once
the environment changes beyond the presumed domain, the
algorithm will no longer be able to adapt: it will not function
properly anymore. Therefore, it is necessary to design a
mechanism that allows wireless networks to automatically self-
create and self-evolve algorithms according to the changes in
the (spatial) environment.

Based on this motivation, we propose a novel algorithm
design mechanism called an Automatic Runtime Evolutionary
Adaptation (AREA) mechanism. The AREA mechanism has
three main properties, including automatic computing, runtime
processing, and evolutionary adaptation.

The self-adaptation property has been widely recognized
as an important performance metric for wireless networks.
However, existing self-adaptive algorithms, based on design
mechanisms such as swarm intelligence [4], stigmergy [5],
and autopoiesis [6] only maintain the adaptation properties
for specific environments. Once the deployment environment
changes beyond the scope of the originally envisioned domain,
the algorithm performance will decrease. The AREA mecha-
nism allows the created algorithm not only to be adaptive but

Algorithm Evolution

Environment 1 Environment 2 Environment 3
‘ Algorithm 1 %4 7 Algorithm 2 /< ; Algorithm 3
7\ S P4 —h

|

[
(Function 1) (Function 2) (Function 3) (Function 4)
Node

uonear) wyLod|y

Fig. 1. AREA lets each agent (node) self-create algorithms that adapt to
different application requirements. The created algorithms self-evolve to other
function combinations, self-adapting to their (changing) environment.

also to evolve to other adaptive abilities based on the variation
of the application requirements and the spatial environment. In
addition, AREA is totally distributed. Each agent only spatially
coordinates with neighbors, uses runtime local information,
and the whole processing flow is automatically executed in
each agent during the runtime.

The AREA mechanism assumes that each agent has some ba-
sic functions, such as routing, forwarding messages, etc. Each
agent mutates local function combinations and learns from
neighbors. Finally, the function combination that meets the
environment requirements emerges and spreads throughout the
network. If the environment or the agent function parameters
change, and the selected function combination no longer meets
the application requirements, agents evolve the algorithm and
converge to new function combinations. In this way, agents
always use the function combinations that suit the application
requirements and the spatial environment. We also present a
stabilization algorithm that reduces the churning phenomenon
in different function combinations while maintains fast con-
vergence of function selection.

We validate the AREA mechanism by applying it to the
simulation of a data aggregation example. In the simulation
example, each agent is supposed to have four basic func-
tions: forwarding messages, routing messages, joining into
clusters, and increasing the transmission range. The applica-
tion requirement for every agent is to maintain the message
arriving rate above a predefined threshold. By changing the
agent density and transmission bandwidth parameters, agents
in the network self-create and self-evolve various function
combinations according to the spatial distribution. For the
implementation of each component in AREA, we in detail
illustrate how to select the parameters of fitness functions, etc.

based on the requirement. We use three other algorithms with
fixed strategies for comparison. According to the test results,
the AREA mechanism always maintains the best performance
even when the environment and agent parameters change.

The remainder of the paper is organized as follows. Sec-
tion II overviews the AREA mechanism and the application
example. Section III illustrates AREA’s components in detail
and the example implementation. We present the simulation
results and evaluations in Section IV, related work follows in
Section V and the paper ends with conclusions.

II. THE AREA MECHANISM OVERVIEW

In this section, we present the design framework of the
AREA mechanism, the working components and the processing
flow. And we demonstrate the general implementation of the
data aggregation example based on AREA.

A. Mechanism Framework

It is supposed that each agent has some basic functions
in the function set, such as forwarding messages, routing,
etc. The agents are given an application requirement, such
as “the message arriving rate should be larger than a prede-
fined value”. The agents self-create algorithms by selecting
suitable combinations from predefined basic functions. When
the environment changes, the agents self-evolve to select
a different function combination as the new algorithm. In
the system, each agent is independent and distributed, and
only accesses the information of neighboring agents. The
working process is automatic and during runtime. Figure 1
demonstrates an example of the AREA design framework.
In the environment 1, the agent (node) converges to select
the combination of function 1, 2 and 3 as the algorithm
to fulfill the requirement. As the environment changes from
environment 1 to 2, the originally created algorithm cannot
meet the application requirement any longer. The agent evolves
the algorithm and converge to select the combination of
function 2 and 3. No matter how the environment changes,
the agent always evolves to the function combination that
will fulfill the predefined application requirements. After these
requirements are fulfilled, the algorithm selected by the agents
converges to a spatially stable state.

The AREA mechanism has four working components as
shown in Figure 2(a). The first component is the definition
of the basic functions of the agents in the function set. All
predefined basic functions should work independently of each
other. The second component is function mutation. Each basic
function has a mutation probability that can change between
being used and unused. So each agent can use different
function combinations. The third component is environment
selection. The agents in the network need to meet application
requirements, such as maximizing the message arriving rate,
minimizing the power consumption, etc. Each agent calculates
a fitness credit for every function in the environment, and
learns the function usage rule (using or unusing) of the agent
with the largest function fitness credit in the neighboring

Adaptive Evolution
[Fancton Mution |
- L=
‘ Function ‘ ‘ Function ‘
Environment A
Algorithm Stabilization Environment B

v
Suitable Function ‘

Algorithm ‘

(a) (b)

i

Fig. 2. (a).The working flow components of the AREA mechanism combine
the most suitable functions into an algorithm. (b).The function mutation
component creates different function usage rules (f: use the function; f:
unuse the function), and the rule that best suits the environment (A or B)
is selected as the suitable function.

agents. This component allows the most suitable function com-
binations to be survived and diffused in the spatial network.
To make the algorithm usable in practice, the algorithm needs
to converge once the most suitable function combination is
found, For this, the algorithm stabilization component is used.
This component decreases the churn of selecting different
function combinations in the network by each agent. The four
components outlined above, make it possible for the agents
in the network to select a suitable and stabilized function
combination as the new algorithm. If the environment changes
and the created algorithm can no longer fulfill the application
requirements, the AREA mechanism will make the existing
algorithm evolve to another function combination in order to
meet the new application requirements.

B. Application Example

The AREA mechanism is validated by implementing it in an
application example: data aggregation. Data aggregation is a
basic building block for spatial network application. Most of
the existing data aggregation algorithms are designed for spe-
cific deployment environments. In deployment scenarios where
the environment may change sometimes, these algorithms can
no longer work properly. We use the AREA mechanism to
implement data aggregation in changing environments.

Suppose agents are randomly scattered in an area. Each
agent can only communicate with neighbors. A sink agent
is predefined to aggregate messages from other agents. If new
agents come into the network, the agent density increases. If
existing agents leave the network, the agent density decreases.
We define the bandwidth as the number of the messages that
can be forwarded by a agent at one tick. The agent density and
bandwidth are changeable in the environment. We suppose that
each agent knows the number of messages that are sent out and
arrive at the destination. The data aggregation implementation
based on AREA allows the agents in the network to automat-
ically and during runtime find suitable function combination
that meet its application requirements. The created function
combination for data aggregation maintains a high message
arriving rate and low power consumption values.

In the simulation, the environment is changed by adapting
the agent density and bandwidth. The different simulation sce-
narios are outlined in Figure 3. At the start of the experiment
the agents are randomly deployed. Under standard agent den-
sity and bandwidth, agents self-create function combinations
that use forwarding and routing functions, as shown in Figure
3(a). Then we change the environment by increasing the agent
density. Because the bandwidth is limited, some messages are
now dropped. So the agents start to evolve the existing data
aggregation approach, and spatially self-organize to clusters
to increase the message arriving rate in the network as shown
in Figure 3(b). In case the agent density decreases, and the
network becomes disconnected the message arriving rates of
the agents that are not connected to the destination agent
become 0. When this happens, some of the agents evolve their
algorithm and increase the transmission range to connect the
network as shown in Figure 3(c). The increased transmission
range of the agents will increase their message arriving rates.

III. THE AREA COMPONENTS

Based on the overall design presented in Section II, in the
next subsections, we first define the content and structure of
each component from AREA, and then present the detailed
component implementation for the data aggregation example.

A. The Function Set

Each agent has some basic functions in a function set. These
basic functions, such as joining into a cluster, are predefined,
For each agent, all the possible function combinations form
the search space of the available algorithms. For the data
aggregation application, we use four basic functions in the
function set for each agent: forwarding messages, routing the
messages via the shortest path, joining to a cluster with other
neighbors and increasing the transmission range.

Firstly, each agent has the basic function that it can forward
messages to a neighboring agent. The bandwidth of forwarding
messages is limited. It is supposed that the agent can only
forward a limited number of messages during one time slot.
If the number of messages to be forwarded is larger than the
bandwidth, the agent drops the excess messages.

For the second function it is assumed that each agent
can calculate the next hop on the shortest path based on
the gradient [8]. If the agent knows the next hop on the
shortest path, the agent forwards the messages to the next
hop. Otherwise, the agent forwards the messages to a random
neighboring agent. We assume that if the message is forwarded
to a hop that is further away from the destination agent, then
next hop agent drops the message.

Agents also have the function to join in a cluster. In a
cluster, the cluster leader represents all the members to send
out messages. Because the bandwidth is limited, we suppose
that the forwarding priority of the message from a cluster is
higher than the message from a single agent. And it is assumed
that the forwarding priority of the message from a cluster with
larger number of member agents is higher than the message

Increasing Range
4_ - -

e

©

Fig. 3. The application example of AREA for data aggregation. (a). Agents
evolve to use forwarding and routing functions. (b). Agents form clusters to
send out messages. (c). Agents unconnected to the destination agent increase
their transmission range.

from a cluster with smaller number of member agents. Agents
forward messages from higher to lower priority.

Finally, agents have the basic function to increase their
transmission range. Each agent has a default and an increased
transmission range. If the agent cannot connect to the network
with the destination agent using the default transmission
range, then it can reconfigure (mutate) to use the increased
transmission range.

B. Function Mutation

In this section, we present how the function combinations
are created for each agent. We define the function combination
series {f1,f2,..sfiseersfn}. Where n is the total number of
functions. f; represents the basic function ¢ explained in
Section III-A. The value of f; can be 0 or 1. f; = 0 means
that the function 7 is not used in the function combination, and
fi = 1 means that the function 4 is used. All the basic functions
together form a function combination series. In the initial state,
agents select a random value (0 or 1) for f; (i = 1,2,...,n)
of each basic function. In the function mutation component,
AREA makes each agent change the function value f; by
setting f; = f; with a mutation probability.

In the application example, agent x has a Switch,; value
0 or 1 for each function 7 representing unused or used. We
predefine a mutation probability P, for all the basic functions.
If a random value is smaller than P,,, then Switch,; does not
change. Otherwise, Switch,; is changed to Switchy;.

C. Environment Learning

In this section, we demonstrate how agents learn from each
other, and make the most suitable function combination spread
throughout the network. We define the fitness credit of the
function for each agent by C; = wj1¢i1 + wieciy + - - - +
WikCik + + * + Wim Cim. Where 4 is the function number as
defined in Section III-B. k& (k = 1,2,...,m) is the number
of the evaluation criteria for the function, and m is the total
number of evaluation criteria. For example, the performance
of the network can be determined by the arriving rate, power
consumption, etc. c;; is the fitness credit of the function
evaluated by the criteria k. w;; is the weight of the fitness
credit with evaluation criteria k. In the learning component,
each agent records the fitness credit of each function. At
the same time, each agent detects the fitness values of the
functions from neighboring agents and learns the function

usage strategy (used or unused) from the agent with the largest
fitness credit. Finally, the function combination that has the
largest fitness credit in the network survives and spreads. The
mutation and learning process is shown in Figure 2(b).

For the application example, we define the fitness credit for
every function as follows. The fitness credit of forwarding the
messages is defined as AR-War+FR-Wpr+FC-Wpge. The
AR value equals the percentage of the number of messages
arriving at their destination. If the agent forwards messages
of other agents, then FFR = 1; otherwise, FR = 0. F'C is
the power consumption credit for forwarding messages. If the
agent forwards messages, F'C' is 0; otherwise, F'C'is 1. Wapg,
Wrgr and Wge are the weight values of AR, FR and FC.
The value domain of AR is [0,1]. FR and F'C can be 0 or
1. For different application requirements, AR, F'R and FC
can be set to different values. In the simulation, each agent
sends out 10 messages for each communication round, so the
precision accuracy is 0.1. The message arriving rate is assumed
to be the most important evaluation criteria. Therefore, the
weight value of the arriving rate is set as Wuap = 1.
Wrr = 0.02 and Wgre = 0.01. Their sum is smaller than the
arriving rate precision accuracy 0.1, so their weight values do
not affect the distinction among different message arriving rate
values. In the network, we suppose that forwarding messages
is more important than saving energy. We set Wrp = 0.02,
which is larger than Wrc = 0.01. The fitness credit of routing
messages is defined as AR-Wypr+FR-Wpr+RC-Wge. RC
is the power consumption credit for routing. If the agent cal-
culates the next hop on the shortest path, RC = 0; otherwise
RC = 1. The weight value Wre = 0.01. The fitness credit of
constructing a cluster is defined as AR - Wug + CC - Wee.
CC is the power consumption credit for constructing and
maintaining a cluster. If the agent joins in a cluster, CC' = 0;
otherwise C'C' = 1. The weight value Wz = 0.01. The
fitness credit of adjusting the transmission range is defined as
AR -War+ RN -RU -Wgry + RC-Wge. Where RN is the
parameter that shows whether the agent has a connection route
to the destination agent. If the agent cannot find a connection
route to the destination agent, then RN is set to 1, which
means that the agent has increased its transmission range to the
maximum allowed value. RU is the usage value of increased
transmission range. If the agent increases the transmission
range, and the increased range is used to forward messages of
other agents, then RU = 1; otherwise RU = 0. The weight
value Wgy is set to 0.02. RC'is the power consumption credit
for using different transmission ranges. If the agent uses the
default transmission range, RC = 1; if it uses the increased
transmission range, RC' = 0. The weight value Wreo = 0.01.

D. Stabilization

To make the selected function combination feasible, it must
be stable. In this section, we introduce an algorithm that can
stabilize the system. The mutation and learning probability
are the main factors that affect churning in the selection and
spread of the function combination among agents. First, we
define a fitness credit threshold value 7;. This value equals

Algorithm 1 : Stabilization for Mutation and Learning

Mutation:
for all Agent x do
if (C»L < TZ‘&R<P]\/[)H(C,L'>T7;&R< (PM/D)) then
Switchg; = 1 — Switchg;
end if
end for

Learning:
for all Agent = do
mazC = maz([C;] of Nb)
if maxC > C; then
if (Cl < Ti&R<PL)H(Ci>Ti&R< (PL/D)) then
Switchy; = [Switchg;] of Nb with [mazC]
end if
end if
end for

the minimum acceptable fitness credit value by using or
unusing the function 7. Then we define a stabilization rate
D, which equals the rate between the normal mutation or
learning probability and the minimum acceptable mutation or
learning probability. If the fitness credit of the function i is
smaller than 7;, then the agent selects learning probability
Pr, and mutation probability P),. Otherwise, the agent selects
learning probability % and mutation probability %‘4. So each
agent uses low mutation and learning probabilities in the state
with acceptable fitness credit to decrease churning of different
function combinations. The detail processing flow is shown in
Algorithm 1. Each agent x is given a Switch,; value for each
function i. Where the switch values change between 0 and 1
representing unusing and using the function, R is the random
probability from O to 1 and Nb is the neighbor agents.

To encourage the use of the forwarding and routing func-
tions, in the data aggregation application, the threshold values
of forwarding and routing are set to 1.01. So only agents
with fitness credit 1.02 and higher can use % and % to
learn and mutate. Whether to actually use the clustering and
increasing the transmission range functions is based on the
environment condition, such as agent density, bandwidth, etc.,
so the threshold value of clustering and ranging are set to 0.99
and 1.0 respectively.

IV. TEST AND EVALUATION

We use NetLogo [?] for the simulation experiment. The
deployment area is a 200 x 200 square region. Agents are static
and randomly scattered across the area. Each agent sends out
one message per one tick. After sending 10 messages, each
agent waits 10 ticks for calculating the message arriving rate.
We call the 20 ticks as one communication round. The default
transmission range of each agent is 40 units. All the agents
send messages to one specified destination agent. We run the
experiment 10 times for each testing point.

A. Adaptation to Environments

In the experiments, the environment changes by varying the
agent density and the bandwidth. The agent density ranges
from 5 to 40, with 5 offset. The bandwidth is 5 X 2 units. m
is from O to 7, with 1 offset. Three evaluation parameters are

Msg. Arr. Rate
.

Norm. Power Csp. Unit
o

(a)

Fig. 4.

Msg. Arr. Per Norm. Power Csp. Unit

(©)

(a).Average message arriving rate for various agent densities and bandwidths. (b).Normalized average power consumption unit for various agent

densities and bandwidths. (c).Average message arriving count per normalized power consumption unit for various agent densities and bandwidths.

used: average message arriving rate, average power consump-
tion unit and average arriving rate per power consumption unit.
Three other data aggregation methods are used for comparison.
The first method, named as FR, makes all agents forward
and route the messages. The second method, named as FRC,
makes all agents construct a fixed number of clusters. All
agents can forward and route the messages, but only the cluster
leader represents the cluster to send out messages. The cluster
number is set to 20. The third method, named as FRR, makes
all agents use the increased transmission range to forward and
route the messages. The increased transmission range is 80
units. To evaluate the power consumption performance, we
suppose that the running of each basic function consumes 1
unit power per round.

Figure 4(a) shows the average message arriving rate for
various agent densities and bandwidths. The AREA mechanism
has the best arriving rate in the low density area 5. This
is because the network is generally unconnected with agent
density 5. If the agents that are not connected to the destination
agent do not increase their transmission range, they cannot
send messages to the destination. Furthermore, the AREA
mechanism makes some agents increase their transmission
range to link the connected network. In the low bandwidth
area from O to 2, the AREA mechanism constructs clusters to
meet the bandwidth restrictions. The method FRC uses clusters
to increase the message arriving rate. When the bandwidth is
equal or larger than 20, which is equal to the fixed cluster
number of FRC, the FRC method has the best arriving rate.
But because it is construct with a fixed number of clusters,
the method is not adaptive to the variation of the environment.
If the environment has unconnected subnetwork or very low
bandwidth, agents using the FRC method will drop messages.
Agents that use the FRR method also use the increased
transmission range all the time. In the connected network
with low bandwidth, increasing the transmission range cannot
always increase the message arriving rate. Although AREA
does not have the best arriving rate, the difference to the best
arriving rate is very small. This is because agents need to
keep a mutation rate to adapt to the new environments in
AREA. When the bandwidth is larger than 6, the FR and

FRR methods can also have near optimal message arriving
rate. This is because that the bandwidth is larger than the
total number of agents in the network. So no matter how the
network topology is constructed, all the messages will finally
arrive at their destination.

Figure 4(b) illustrates the power consumption for various
agent density and bandwidth. Because there are four types of
basic functions, the average power consumption unit is nor-
malized to 4. It can be found that the FRC and FRR methods
consume the same amount of energy in all the testing points.
This can be explained because all agents always use clustering
in the FRC method and increase their transmission range when
using the FRR method. This is because it only uses two basic
functions: forwarding and routing. The power consumption of
AREA is larger than FR, because AREA sometimes increases
its transmission range and constructs a cluster to increase the
message arriving rate. But AREA makes all the agents in the
network automatically adapt to the different environments.

In order to evaluate the efficiency of the AREA algorithm,
we calculate the rate between the message arriving count and
the power consumption unit for various agent densities and
bandwidth values, as shown in Figure 4(c). It can be seen that
the AREA algorithm is the most efficient method for almost
all the testing points. Only in the very high bandwidth area,
the FR method is slightly more efficient. This is again because
the total bandwidth is larger than the total number of agents.
Since the AREA algorithm always will mutate to other function
combinations, its efficiency is slightly less at this point.

B. Stabilization Efficiency

Agents in environments with a different spatial distribution
could churn in different function combinations. Stabilization
of the function selection is an important evaluation parameter.
We test the stabilization algorithm presented in Section III-D.

The testing results are shown in Figure 5. We initialize the
environment with an agent density of 20 and bandwidth of 40.
The y coordinates of Figure 5(a) and Figure 5(b) are the mes-
sage arriving rate and the normalized power consumption unit
respectively. The x coordinates in both figures are calculated
by z = lg D, in which D is the stabilization rate with value
1, 5, 10, 50, 100, 500, 1000, 5000, 10000. The other testing

&
- S)
2 | s
!:' w 06
g 5 WM
5 . =
= Arrive Std 50 g Power Std ==
Arrive —— 5 Power ——
0.6 0.4
0 1 2 3 4 Z 0 1 2 3 4
z = lg(Stabilization Rate) x = lg(Stabilization Rate)
(a) (b)
Fig. 5. (a).The average message arriving rate and standard deviation with

various stabilization rates D. (b).The normalized power consumption unit and
standard deviation with various stabilization rates D.

parameters are the same as the previous experiments. Accord-
ing to the results, as the stabilization rate D increases from 1
to 10000, the standard deviations of the message arriving rate
and power consumption value decreases significantly. When
the stabilization rate becomes 10000, which is 4 (= lg 10000)
in the figures, the standard deviations of the arriving rate and
power consumption are 0.022 and 0.015. As the stabilization
rate increases, the message arriving rate increases from 0.87
to 1. This is because the low stabilization rate D make the
system unstable, and further decreases the message arriving
rate. Therefore the stabilization Algorithm 1 can effectively
stabilize the function mutation and learning.

V. RELATED WORK

Traditional spatial computing algorithms [9] [10] primarily
focus on function implementation in a fixed environment.
The spatial and temporal distribution of the agents in the
network significantly affect the relations among agents. In this
paper, we make advantage of the coordination between agent
interaction in the spatial network to promote the evolution of
algorithms adapting to various changing environments.

Evolutionary dynamics [11] researches the power of ad-
vancing the system to evolves from one state to another
on a global population level. Evolution dynamics theory
forms the theoretical basis on which the AREA mechanism
is founded. Evolutionary computing is widely researched for
producing optimized systems [12]. Traditional evolutionary
computation [13] selects members via centralized methods,
which is not very efficient in distributed environments. Nakano
and Suda [14] and Lee et al. [15] improve the adaptation
mechanisms using evolutionary computing. They propose de-
sign structures that build adaptive network services using
bio-inspired distributed agents. By evolutionary adaptation,
agents can evolve and adapt their behavior to the changing
environments. And Champrasert et al. [16] present a structure
to self-optimize and self-stabilize cloud applications. It extends
the biological evolutionary adaptation from agents to related
platforms. But the above papers do not explain the influence
of the parameters to the performance of the system. More-
over, these works focus on the construction of services using
interacting agents, and the simulation is on a grid network,
which does not map naturally (nor easily) to wireless networks.
Mirko et al. [?] extends the tuple spaces by chemical-inspired

model to coordinate spatially pervasive services. Although the
mechanism can effectively make services diffuse and interact
in a spatial network, it can not coordinate multiple different
services together to cope with various problems.

VI. CONCLUSIONS

We propose a new mechanism: automatic runtime evolu-
tionary adaptation (AREA) for spatial algorithm design. It
can effectively create and evolve the algorithms in wireless
networks to meet application requirements and adapt to the
changing of the environment. The working process of AREA
is automatically updated in every agent during runtime and the
created algorithm works stably in the network. The mecha-
nism is validated by the simulation experiment involving data
aggregation. For the future work, we plan to use the AREA
mechanism for the creation of other algorithms, such as self-
created gradient, synchronization, etc. Further more, the AREA
mechanism has the potential to be used in other domains, such
as Internet services, swarm robotics control, etc., which will
be further researched.

REFERENCES

[1] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Mon-

itoring volcanic eruptions with a wireless sensor network,” in Wireless

Sensor Networks, 2005. Proceeedings of the Second European Workshop

on. IEEE, 2005, pp. 108-120.

U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Corradi,

“Mobeyes: smart mobs for urban monitoring with a vehicular sensor

network,” Wireless Communications, IEEE, vol. 13, no. 5, pp. 52-57,

2006.

[3] G. Mao, B. Fidan, and B. Anderson, “Wireless sensor network localiza-

tion techniques,” Computer Networks, vol. 51, no. 10, pp. 2529-2553,

2007.

J. Kennedy, “Swarm intelligence,” Handbook of nature-inspired and

innovative computing, pp. 187-219, 2006.

[5] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant algorithms and
stigmergy,” Future Generation Computer Systems, vol. 16, no. 8, pp.
851-871, 2000.

[6] N. Nanas and A. De Roeck, “Autopoiesis, the immune system, and

adaptive information filtering,” Natural Computing, vol. 8, no. 2, pp.

387427, 2009.

W. Jung, K. Lim, Y. Ko, and S. Park, “Efficient clustering-based

data aggregation techniques for wireless sensor networks,” Wireless

Networks, vol. 17, no. 5, pp. 1387-1400, 2011.

Q. Liu, A. Pruteanu, and S. Dulman, “Gde: a distributed gradient-based

algorithm for distance estimation in large-scale networks,” in MSWiM

2011, ACM, 2011, pp. 151-158.

[9] J. Beal and R. Schantz, “A spatial computing approach to distributed

algorithms,” in 45th Asilomar Conference on Signals, Systems, and

Computers, 2010.

M. Duckham, “Decentralized spatial algorithm design,” Spatial Com-

puting 2012 colocated with AAMAS, p. 13.

M. Nowak, Evolutionary Dynamics: exploring the equations of life.

Belknap Press, 2006.

Y. Jin and J. Branke, “Evolutionary optimization in uncertain environ-

ments : A survey,” Evolutionary Computation, IEEE Transactions on,

vol. 9, no. 3, pp. 303-317, 2005.

M. Melanie, “An introduction to genetic algorithms,” Cambridge, Mas-

sachusetts London, England, Fifth printing, 1999.

T. Nakano and T. Suda, “Self-organizing network services with evolu-

tionary adaptation,” Neural Networks, IEEE Transactions on, vol. 16,

no. 5, pp. 1269-1278, 2005.

C. Lee, J. Suzuki, and A. Vasilakos, “An evolutionary game theoretic

framework for adaptive, cooperative and stable network applications,”

Bio-Inspired Models of Network, Information, and Computing Systems,

pp. 189-204, 2012.

[2

—

4

=

[7

—

[8

[t}

[10]
(1]

[12]

[13]

[14]

[15]

[16] P. Champrasert, J. Suzuki, and C. Lee, “Exploring self-optimization
and self-stabilization properties in bio-inspired autonomic cloud applica-
tions,” Concurrency and Computation: Practice and Experience, 2012.

