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Abstract Hierarchical structures are often deployed in large scale distributed sys-
tems to structure communication. Building and maintaining such structures in dy-
namic environments is challenging. Self-organisation is the approach taken in this
chapter. AETOS, the Adaptive Epidemic Tree Overlay Service, provides tree over-
lays on demand. AETOS uses three local agents to this purpose (i) to translate ap-
plication requirements to self-organisation requirements, (ii) to self-organise nodes
into optimised tree topologies based on these requirements, (iii) to control boot-
strapping and termination of self-organisation. The evaluation of AETOS in dif-
ferent simulation settings shows that it provides high connectivity in tree overlays
optimised according to application requirements.

1 Introduction

Complex, intelligent, distributed systems in dynamic environments need to adapt
continuously. Management is a challenge. Central management of such systems is
not often an option: distributed management is required.

Self-management relies on local management at the level of individual systems,
and virtual topologies (overlays) to regulate communication between systems, for
example to aggregate global knowledge about the state of a system. Hierarchies of-
ten provide the structure upon which distributed management is based. Examples of
domains of applications for which this holds include DNS, multimedia multicast-
ing [32], energy management [29] and distributed databases [16].

Building and maintaining robust and application-independent hierarchical topolo-
gies designed to this purpose is the challenge this chapter addresses, in particular
for tree structures. Connectivity in a tree overlay is of key importance. If a node is
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(temporarily) disconnected, the branches underneath the node are also (temporarily)
disconnected from the rest of the system, affecting global performance.

AETOS, the Adaptive Epidemic Tree Overlay Service, is the approach proposed in
this chapter. AETOS makes it possible to create self-organised tree topologies that
are proactively resilient to failures, and reactively self-heal [9] the structure built.
AETOS [30] builds and maintains application-independent robust tree topologies in
dynamic distributed environments.

Intelligent software agents are used (i) to translate application requirements to
self-organisation requirements, (ii) to self-organise nodes in optimised tree topolo-
gies based on these requirements, i.e., reactively reconnecting or rewiring connec-
tions to improve robustness, (iii) to control bootstrapping and termination of self-
organisation.

Experimental evaluation of the AETOS self-organisation based on connectivity
convergence is presented.

This book chapter is outlined as follows: Section 2 outlines application domains
in which hierarchical topologies are used. It also illustrates the problem and sum-
marises the contributions of AETOS. Section 3 illustrates related work on robust
tree overlays. Section 4 provides a high-level overview of the agent-based approach
of AETOS. Sections 5-7 present the three agents of AETOS: the ‘application agent’,
the ‘self-organisation agent’ and the ‘system control agent’ respectively. Section 8
illustrates the experimental evaluation of the approach that this book chapter pro-
poses. Finally, Section 9 concludes this chapter and outlines future work.

2 Objectives and contributions

This section discusses the importance of tree topologies for various application
domains and identifies the problem of managing application-independent self-
organised trees. It also provides an overview of the proposed solution.

2.1 Applications

Tree structures are often used in information management for aggregation, search,
dissemination and decision-making. Their complexity is usually bounded to a log-
arithmic function, or to the number of nodes in the tree structure. They are also
used for many other purposes, such as knowledge extraction and visual information
systems.

Although the use of trees in centralised systems is typical and has been exten-
sively studied, using and maintaining a tree structure in a decentralised system is the
challenge this chapter addresses. Introducing a dynamic tree structure for distributed
systems potentially enables effective self-management. As an example, EPOS, the
Energy Plan Overlay Self-stabilisation system [29], performs stabilisation in the
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global energy utilisation of thermostatically controlled devices. These devices are
interconnected and organised in a tree overlay. Based on this structure, they perform
local aggregation and decision-making of the local allocated energy they consume
for a period of time. EPOS achieves the minimisation or the reverse of the deviations
in the global energy utilisation making it possible (in theory) for power systems to
become more robust and flexible to dynamic environments.

IP multicast appears to have many limitations in its adoption and deployment [11],
especially concerning the average end user. These limitations are related to its rout-
ing complexity and scalability. Application-level multicast has emerged as a new
approach for distributing multimedia content. The majority of methods based on
application-level multicast use tree overlays. Organising nodes in a loop-free struc-
ture can make distribution of content effective and potentially scalable compared to
mesh-based overlays. Extensive comparisons of various application-level multicast
approaches are illustrated in [6, 24, 32].

Tree structures integrated with skip lists [31] in skip tree graphs benefit dis-
tributed database operations such as range queries [16]. In the same domain, tree
overlays, introduced as a distributed indexing scheme, enhance resource searching
and sharing [37]. Finally, super-peer topologies model distributed systems in a hi-
erarchical fashion that can reflect the heterogeneity of different node capabilities,
such as storing capacity, processing power, connectivity or bandwidth. This pro-
vides the potential for various application optimisations, such as load-balancing.
Such an option is explored in ERGO, the Enhanced Reconfigurable Gnutella Over-
lay [28]. ERGO rewires nodes with high outgoing load to nodes with low incoming
load. This is achieved through the interaction of lower-level nodes with higher-level
virtual server nodes responsible for load-balancing.

2.2 Problem statement

As stated above building and especially maintaining tree overlays, optimised for
different applications, is the problem this chapter addresses. The main aspects of this
problem are: self-organisation, self-optimisation, and application independence.

Self-organisation: Nodes should be able to self-organise themselves in a tree over-
lay using local knowledge. Often, as explained in Section 6, this knowledge is a par-
tial view of the distributed environment. Nodes should be able to connect to other
nodes and potentially rewire connections without introducing loops or violating re-
strictions such as their capacity.

Self-optimisation: The satisfaction of application requirements when using tree
overlays is usually an optimisation problem, as described in detail in Section 3.
Nodes should connect to the appropriate neighbours to maximise their applications’
utilities. Note that applications most often use topologically different tree overlays
as they are based on different performance metrics. For example, in EPOS [29]
availability of nodes, is the metric used to identify disconnected nodes. Note that
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availability is a metric measurable in many applications, such as Overnet [5]. Simi-
larly, application-level multicast tree overlays are based on metrics such as latency,
bandwidth, node degrees and other. Section 3 discusses related approaches.

Application independence: Providing a dedicated self-organisation mechanism
for each application can be costly. Distributed systems are dynamic, and support
applications that interact with each other.

Figure 1 illustrates the concept of different tree overlays on the same physical
network. Each overlay is used by a different application. A physical host corre-
sponds to one (or more) overlay host in an overlay network. Note that the position
of an overlay host in a tree overlay is different for each application overlay. This
is because the mapping between a physical host and the respective overlay hosts
depends on the application requirements and optimisation metrics.

Fig. 1 Each overlay ap-
plication requires a differ-
ent optimised tree topol-
ogy. A physical node cor-
responds to overlay nodes
placed in different position
in the tree. In this case, the
building and maintenance
is application-dependent. A
self-organisation middleware
service for tree overlays could
solve this problem.

Each application, for every overlay, is responsible for building and maintaining
the tree structure. A generic self-organisation middleware service can decouple the
building and maintenance from the application. This chapter focuses on the prob-
lem of how such a service can be modelled and how it can function in large-scale
distributed systems, such as virtual networks over physical infrastructures or large-
scale multi-agent systems.

2.3 System Overview

The contribution of this chapter is to propose a self-organisation service for tree
overlays, named AETOS, the Adaptive Epidemic Tree Overlay Service. AETOS is
an agent-based system positioned between the overlay applications and the phys-
ical network. Figure 2 illustrates the position and the interactions of AETOS in a
distributed environment.
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Fig. 2 AETOS is placed
as a middleware service in
a distributed environment.
It undertakes the role of
building and maintaining
different tree overlays for
different applications.

Overlay nodes have direct access to information from the physical network. This
information, together with other application requirements, is passed to the AETOS
layer. Based on this information, AETOS builds and maintains on-demand different
tree overlays for each application.

AETOS achieves the abstraction of local application requirements to local self-
organisation requirements. Nodes are dynamically self-organised to tree topologies
on-demand based on their proximity derived from the local application require-
ments. Bootstrapping and termination of self-organisation is managed locally.

The experimental evaluation of Section 8 reveals that AETOS achieves high con-
nectivity of tree overlays in various experimental settings. This chapter also investi-
gates the influence of various factors in the cost-effectiveness of AETOS.

3 Related work

This section presents related literature on self-organised and robust tree overlays,
focusing in particular on: (i) application domain, (ii) optimisation metrics, (iii) com-
plementary overlays, (iv) build and maintenance, (v) decentralisation level, and (vi)
proactiveness vs. reactiveness. Open issues are discussed and outlined, illustrating
the need for a self-organisation service, such as AETOS.

3.1 Literature review

This section provides an overview of related work in the area of robust self-
organised tree overlays, on the basis of the six areas distinguished above.
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Application domain: The majority of the methods concerns tree overlays for
application-level multicast, video streaming and real-time applications, as under-
lined in Section 2.1. Multimedia applications require effective broadcast for guar-
anteeing high QoS. The root is usually the provider of the multimedia content and
the rest of the nodes are end-users that receive this content. They contribute re-
sources in the system by forwarding the content they receive from their parents to
their children. In database systems, complex queries can be performed over peer-
to-peer tree overlays [17, 21]. Maintaining a robust and reliable topology is crucial
for data consistency and knowledge extraction from the network. Publish-subscribe
systems [10, 14] also benefit from tree overlays as they can be used to minimise
the changes in the event routing. Other domains in which tree overlays are deployed
are grid environments for task allocation and scheduling [8, 12] and sensor networks
for data collection [12]. Note that, although these applications vary significantly and
have different requirements, the common goal of all of them is shared: to maximise
its utility by performing operations over application specific optimised tree overlays.

Optimisation metrics: Robustness in tree overlays can be achieved by single or
multi-metric objective optimisations in the self-organisation process. Various op-
timisation metrics, related to the application type, are used to organise nodes in an
appropriate tree overlay for the application. Some of the most common optimisation
metrics include delay, bandwidth, node degree, uptime and other related optimisa-
tion metrics. Note that these metrics are usually related to the underlying physical
network, in order for applications to maximise the utilisation of available network
resources. In [12], trees are optimised by considering the number of hops and the
eccentricity, both metrics related to the experienced delay in the underlying physical
network. Bandwidth and node degree are associated in [13]. The number of children
influences the bandwidth consumed from their parents in multicasting applications.
In contrast, these two metrics are assumed independent in mTreebone [36]. This
assumption is valid when other applications consume part of the available band-
width. Node degree influences the topology and the optimisation of the application.
Trees can be balanced, fat (wide) or long ones. Tree topologies, such as the latter two
ones, can be integrated by exploiting trade-offs between opposing performance met-
rics, i.e., uptime and bandwidth [12, 32]. Similar trade-offs are explored in [22] as
well. In these cases, multi-metric objective optimisations are applied by combining
or weighting two or more metrics. For example, in [32], bandwidth and uptime are
combined by computing their product, the ‘service capability contribution’. Weight-
ing schemes between ‘path weight’-‘hop count’ and ‘delay penalty’-‘resource us-
age’ are proposed in [12] and [22] respectively. Finally, the sojourn probability [19]
and the joining times of nodes [23] can be used for the optimisation of tree overlays.

Complementary overlays: Some multicast applications maintain tree overlays
over mesh ones. RESMO [22] is a minimum delay, minimum resource usage span-
ning tree over a mesh overlay. RESMO selects links from the mesh overlay with
sufficient bandwidth. mTreeBone [36] is based on the similar concept of selecting
stable nodes from the mesh overlay to build a backbone tree overlay. MeshTree [33]
is a combination of a tree and mesh overlay by inserting shortcut links between
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the nodes of the tree overlay. Such a link redundancy is used in other approaches
as well. For example, BATON* [17] additionally inserts adjacent and neighbour
links between nodes of the tree for acquiring additional robustness. TAG [23] and
PRM [4] use gossiping and random links respectively to deal with data loss and
discontinuous playback in real-time applications. Gossiping is used to support trees
in GoCast [34] as well. Other underlying complementary overlays that appear in
literature are DHTs [10]. However, DHTs, are not resilient to failures and require
maintenance.

Build and maintenance: In the investigated approaches in this section, the build-
ing process of tree overlays is either integrated with their maintenance, for example
in [20], or it serves as a bootstrapping mechanism for the maintenance that follows,
e.g. [3]. The main method used for building a tree, or an initial version of it, is
the consecutive joins to candidate parents and children [33] or to the leaves of the
tree [32]. These candidates are derived randomly [19] or from their proximity to the
local node [23]. After the initial joins, nodes either aim to improve their position
in the tree or they cooperate to optimise the tree topology. In the first case, nodes
perform shift-up operations [32] by moving to an upper level in the tree, whereas,
in the second case, a parent and one of its children swap their positions [1, 17].
Plumtree [20] combines eager and lazy push gossiping strategies to build and main-
tain a tree overlay. In [10], the node-key mapping of the underlying DHT is used
to form the tree overlay. Alternative methods for the distributed building of a tree
overlay include the top-down approach proposed in [22], the Bellman Ford [12]
and Prim’s algorithm [13]. Furthermore, nodes can monitor the connectivity of their
neighbours by sending heartbeats [21, 23]. In case of a failure, they try to connect
with another node. TreeOpt [27] improves the tree connectivity by performing two
types of children moves as an evolutionary optimisation of the tree overlay. In [14],
a candidate parent is selected by applying and combining different repair strategies
related to the application requirements. Similarly in [8], ancestor lists are retained
in case of failures. In contrast, the proposed approach in [13] defines a ‘parent-to-
be’ for every node (besides the root) before a failure occurs. Thus, repair is faster.
Other techniques propose link redundancy in order to satisfy alternative connec-
tivity in case of failures [17, 36]. Load-balancing also supports the maintenance
of tree overlays by aiming to retain the load in the nodes between root and leaves
equal [17, 21].

Decentralisation level: Among the illustrated approaches, there are some hybrid
schemes for topology management. DPOCS [1] is based on the ‘overlay con-
trol server (OCS)’ that assists nodes to join the multicast groups. OMNI [3] and
TAG [23] follow a similar concept by introducing the ‘multicast server nodes
(MSNs)’ and a ‘content server’ respectively. mTreebone [36] utilises only stable
nodes for video multicasting. BulkTree [2] groups the nodes to ‘super-nodes’ in or-
der to increase the stability of the tree. Finally, the approach of [19] is based on a
video broadcasting source node that centrally collects and calculates statistics. This
information is used during for the self-organisation process.
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Proactiveness vs. reactiveness: Methods that apply a sorting of the nodes, within
the tree overlay, for application optimisation are considered proactive. For exam-
ple, the use of ‘service capability contribution’ [32] as a metric for combining a
bandwidth-ordered and a time-ordered tree makes the multicasting proactively more
robust and efficient. Methods that use complementary overlays [20, 33, 34, 36], link
and data redundancy [4, 17, 21, 23] are also regarded as proactive approaches. In
this case, proactiveness is applied indirectly and externally, by other overlay support.
In [13], a highly proactive approach is proposed. Nodes calculate the new parents
for their children before a failure occurs and without violating the node degrees. In
contrast, reactive nodes monitor their neighbours [21] and perform reconnections to
other nodes when a failure occurs. Usually the selection of the nodes is based on
various strategies [14] that balance performance trade-offs. TAG [23] can be con-
sidered to be a reactive system as it operates in highly dynamic environments with
real-time constraints. Proactive approaches benefit from the fact that they aim to
decrease the complexity and time of the repair actions or the impact of failures.
However, proactive approaches introduce: (i) a usually constant but (ii) significant
communication and processing cost.

3.2 Open Issues

The conclusions from the literature review are in line with the AETOS motivation
discussed in Section 2. Robust and self-organised tree overlays depend on the ap-
plication domain. Most optimisations consider metrics related to physical networks.
It is unclear how other higher-level application-related metrics could influence and
change the proposed self-organisation methods. In addition, related work reveals
that different applications have different trade-offs. Therefore, combining or weight-
ing multiple optimisation metrics, in an application-independent way, is challeng-
ing.

Dynamic protocols, i.e., gossiping protocols, and complementary overlays are
effective in many cases. Usually, they are not required to be dedicated for the self-
organisation of trees but rather can be reused as existing services in distributed en-
vironments. The role of such complementary overlays should be further studied and
clarified. The same holds for the proactive or reactive approaches of self-organised
systems. Although high proactiveness results in high robustness and resilience to
failures, the required cost can be significant with relatively low benefits for the ap-
plication. Future work should explore the level of proactiveness and reactiveness
required for building robust tree overlays for a wide range of applications.
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Fig. 3 AETOS is based on
three agents that interact
locally. The ‘application
agent’ provides the ap-
plication requirements to
the ‘system control agent’.
The latter bootstraps self-
organisation, monitors the
‘self-organisation agent’
and finally terminates self-
organisation. When the ‘self-
organisation agent’ is termi-
nated, it makes the parent
and the children neighbours
available to the ‘application
agent’.

4 Approach

The multi-agent systems paradigm, in which individual autonomous agents interact
with each other to accomplish their goals, has been successfully applied to man-
agement and self-organisation of distributed systems [7, 25, 35]. AETOS, a service
for building and maintaining on-demand and application-independent robust tree
overlays, deploys agents for the purpose of self-organisation.

Overlay hosts (nodes) are the local environment of AETOS agents. These agents
act solely within their local environment (and do not migrate).

AETOS agents have (i) local knowledge, (ii) local components that manage the
local knowledge and execute local tasks and (iii) local layers of components that
create a hierarchy in the information flow. The AETOS service is provided by these
agents (and their interaction).

Three local agents participate in AETOS: (i) the application agent, (ii) the self-
organisation agent and (iii) the system control agent. Figure 3 illustrates how they
interact in the local AETOS environment.

The principle interactions among AETOS agents are outlined as follows:
The ‘application agent’ abstracts the application-specific requirements to applica-

tion-independent self-organisation requirements by providing a common interface
between applications and AETOS. The ‘system control agent’ turns the self-organi-
sation requirements to self-organisation parameters that the ‘self-organisation agent’
understands. It then bootstraps, monitors and finally terminates the self-organisation
process. Upon termination, the ‘self-organisation agent’ makes the parent and chil-
dren neighbours available to the ‘application agent’ which makes them accessible
to the application.

Note that, Figure 3 depicts interaction between the ‘system control agent’ and
other ‘system control agents’ outside its local environment. Such interaction is op-
tional and beyond the focus of this paper.
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5 Application agent

The ‘application agent’ provides a generic interface for managing application re-
quirements between AETOS and different applications. Note that, these require-
ments are parametrisation settings that make an application work effectively. There
is one ‘application agent’ per application instance. The set of application require-
ments, denoted by A, managed by the ‘application agent’ are the following:

Robustness (r): This is the abstraction of the optimisation metric on which the
self-organisation is based. It can concern any of the previously identified metrics
mentioned in Section 2.2 and 3.1. If the application utilises more than one optimi-
sation metrics, the application itself must apply a weighting scheme, or function to
derive the abstract robustness r. Robustness is assumed to be a decimal number.

Node degree (n): The node degree concerns the number of neighbours for each
application instance. It denotes the available resources the application reserves for
the tree overlay.

Expected response time (tr): This is the time period in which AETOS should re-
turn the tree neighbours to the application instance. Higher response times allow
better topology optimisations. Section 7 explains the use of this parameter by the
‘system control agent’.

Note that the above application requirements are the local knowledge of the ‘ap-
plication agent’. The executed tasks are the following:

Register: The ‘application agent’ contacts the ‘system control agent’ and sends
(i) its identifier and (ii) a new tree overlay identifier, to register a new tree overlay
in the AETOS service. This information is finally stored in the ‘self-organisation
agent’ together with the reserved space for the tree neighbours.

Build: This task concerns the creation and maintenance of a tree overlay. It enables
on-demand self-organisation. The ‘application agent’ sends (i) its identifier, (ii) the
tree overlay identifier and (iii) the set of application requirements A to the ‘system
control agent’. If the utilised tree overlay does not meet the expectations of the
application, this task is executed again.

Connect: When the set of tree neighbours is received from the self-organisation
agent, the set is delivered to the application that finally establishes the connections.

Unregister: The ‘application agent’ contacts the ‘system control agent’ and sends
a tree overlay identifier. The self-organisation for this overlay terminates and all the
information related to this overlay is removed from the ‘self-organisation agent’.

By implementing an ‘application agent’ that incorporates the knowledge and the
tasks above, applications have access to the AETOS service.
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6 Self-organisation agent

In AETOS, each node has one local ‘self-organisation agent’. The ‘self-organisation
agent’ forms the core of the AETOS system. The self-organisation agent’s knowl-
edge, components and 3-layered service architecture are presented in more detail
below.

6.1 Knowledge

The ‘self-organisation agent’ has different partial views of its distributed environ-
ment. A partial view is a list of a finite number of other node descriptors. A node
descriptor contains information related to the node and its applications, such as
its address, connection port, overlay identifier and robustness r. A node descriptor
gives the fundamental knowledge which forms the basis for communication between
‘self-organisation agents’. The overlay identifier that belongs to a node descriptor
received is used by the ‘self-organisation agent’ to match and extract the respective
overlay knowledge that holds locally. Each ‘self-organisation agent’ has 3 partial
views: the random view, the proximity view and the tree view, each described below.

Random View (R): The random view contains the primary knowledge and search
space of the ‘self-organisation agent’. It consists of a collection of random node
descriptors from the distributed environment. Note that, the random view is dynamic
and changes continuously. This local knowledge creates a global random graph for
all overlay hosts. The maintenance and the dynamic changes of the random view are
explained in Section 6.2.

Proximity View (M): The proximity view contains nodes with close proximity to
the local node. Proximity is derived by calculating the ranking distance between two
nodes. In AETOS, rank values refer to the robustness values r. Therefore, the robust-
ness distance between an agent x and an agent y is d = |rx− ry|. The search space
for filling the proximity view is the random view. However, it is also filled by en-
abling close proximity nodes to exchange neighbours (gossip) and further discover
each other faster. Section 6.2 illustrates this option. Finally, the proximity view is
dynamic and reconfigurable. This means that the ranking function can potentially
change by reconfiguring the view appropriately. This aspect is explained in detail in
Section 6.2.

The neighbours of a node in the tree hierarchy are split in two levels, the parent
and the children. This concept is applied in the proximity view as well. Two sets of
neighbours are defined: (i) the candidate parents (P) and (ii) the candidate children
(C) such that M = P∪C. Note that the sets are sorted according to robustness r of
the node descriptors.

Tree View (T): The tree view is a sorted set with the parent and the children of the
local node in the tree overlay. The search space for filling the tree view is the prox-
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imity view. The tree view is the one that is provided at the end of self-organisation
process to the ‘application agent’.

The above views are partial. Their length is a predefined system parameter and
depends on the capacity of nodes and on the size of the whole system. For large-
scale systems with thousands of nodes, |R| ≈ 50 [26]. For the proximity view, a
similar scheme is proposed with |M| ≤ |R|. The length of the tree view is |T|= n.

The ratio of the length of the candidate children set over the length of candidate
parents set ( |C||P| ) is proportional to the number of children c = n−1. For example, if
|M|= 12 and c = 3 then |C|= 9 and |P|= 3. This guarantees that the search space
for children and the parent is proportional.

Fig. 4 The fundamen-
tal knowledge of a ‘self-
organisation agent’ is based
on 3 views: (i) the random
view, (ii) the proximity view
and (iii) the tree view. The
proximity view is filled by
random samples and close-
proximity neighbours discov-
ered through gossiping. The
nodes with the highest robust-
ness in the proximity view are
the potential neighbours in the
final tree view.

Figure 4 illustrates an example of information flow among the views in a self-
organisation agent. The proximity of the local random samples from the random
view is calculated and the closest neighbours are inserted in the proximity view.
Other close-proximity neighbours are discovered through gossiping. Finally, the
candidate neighbours with the highest robustness are acquired for tree neighbours.
Upon success, they are inserted in the tree view. Section 6.2 provides detailed in-
formation about the local interactions and tasks executed by the ‘self-organisation
agent’.

6.2 Components

The local knowledge and tasks of the ‘self-organisation agent’ are facilitated in the
following components. Figure 6 outlines these components and their interactions.

Proximity Manager: It holds the proximity view. It interacts with the ‘proxim-
ity sampling’ component and the ‘reconfiguration manager’ component to update
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and improve the proximity view. Periodically, it informs the tree manager about the
candidate neighbours with the higher robustness r in its proximity view.

Random Sampling: This component maintains the random view. This view is up-
dated through a gossiping protocol, that is the peer sampling service [26]. With
the peer sampling service, nodes continuously have random samples of the whole
distributed environment and refresh old nodes with new ones. Gossiping creates a
dynamic robust overlay on which the tree overlay is based. Readers are referred
to [26] for details concerning the peer sampling service.

Proximity Sampling: This is the component that realises the gossiping among
close-proximity nodes as Figure 4 illustrates. ‘Random sampling’ discovers close-
proximity nodes from random samples. In contrast, ‘proximity sampling’ further
discovers candidate neighbours by exchanging node descriptors between close-
proximity nodes. The process of such a gossiping protocol is described in detail
in [18]. ‘Proximity sampling’ interacts with the ‘proximity manager’ to update the
proximity view with new candidate parents or children. Note that, this component
is used to make the system converge faster to the required tree topology.

Reconfiguration Manager: The proximity view is not static but rather dynamic
and reconfigurable. This means that the ranking function is defined in a dynamic
range of robustness values which form a subset of the whole range of values in the
proximity view. The ‘reconfiguration manager’ accesses the ‘proximity manager’
and is responsible for triggering a number of reconfigurations to the proximity view.

The ranges of robustness values for candidate parents and children are examined
below. Let M be the range of the whole set of robustness values that node descriptors
contain. All of the indexes refer to robustness values in the proximity view: (i) l
points to robustness value of the local node descriptor. (ii) A potential parent p
belongs to the candidate parents range P such that p ∈ P = [l + 1, pmax]. Similarly,
(iii) the potential children c1 < c2 < ... < cn, with n the number of children, point to
the candidate children range C such that {c1,c2, ...,cn} ∈C = [cmin, l−1]. Figure 5a
illustrates the initial ranges of candidate neighbouring sets. The ‘reconfiguration
manager’ can perform the following reconfigurations:

1. Initialising Configuration: the ranges of the candidate neighbours are config-
ured as P = [l + 1, pmax] and C = [cmin, l− 1] respectively. The node descriptor
with the higher robustness r in each candidate set is the potential child or parent
respectively. In this case p = pmax and ci = l−1, for the ith potential child.

2. Upgrade Reconfiguration: the ‘self-organisation agent’ has already found a par-
ent or its children and it seeks to connect with more robust nodes. To achieve
this, it binds the starting point of its view to the robustness values of the selected
nodes and fills the view with more robust node descriptors. The candidate par-
ents range is reconfigured as P = [p + 1, pmax] and the children candidate range
as C = [c1 +1, l−1]. Figure 5b depicts the upgrade reconfiguration.

3. Downgrade Reconfiguration: if a previously selected candidate neighbour has
rejected the connection, the view is updated with less robust nodes. In this case,
the candidate ranges are updated as P = [l +1, pmax−1] and C = [cmin, l−2] re-
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Fig. 5 The parent and children candidates in the proximity view. (a) initial proximity view, (b)
after an upgrade reconfiguration, (c) after a downgrade reconfiguration, (d) applying an upgrade
and a downgrade reconfiguration.

spectively. Figure 5c illustrates how the view is updated in this case. Note that,
the downgrade reconfiguration is performed step-by-step, decrementing the po-
sitions by one for every rejected parent or child connection respectively.

The ‘reconfiguration manager’ has the option to switch from a downgrade or up-
grade configuration back to the initial one. Furthermore, the proximity view can be
a result of both an upgrade and a downgrade reconfiguration. Figure 5d illustrates an
example of this case. Any applied reconfiguration keeps the length of the proximity
view equal or lower than the initial maximum length.

Tree Manager: The Tree Manager manages the connectivity of the tree overlay
and it interacts with other nodes to establish the parent and children connections.
The interactions are based on the exchange of 4 messages: (i) the request of a parent
or child connection, (ii) the acknowledgement of a request, (iii) the rejection of a
request and (iv) the removal of a parent or child connection.

In its active state, the ‘tree manager’ periodically accesses the ‘proximity man-
ager’ and receives the candidate parent and child with the highest robustness r.
It sends a ‘parent and child request’ to each of them respectively. If the ‘proxim-
ity manager’ cannot provide candidate neighbours to the ‘tree manager’ for a pre-
specified period of time, it reports this information to the ‘reaction manager’.

The passive state of the ‘tree manager’ defines the appropriate reactions to the
messages received. For a ‘parent or child request’, the reactions are the following:

1. It checks if the robustness r of the two communicating nodes are consistent.
This means that the value of the parent should be higher than the value of the
child. If inconsistencies occur due to changes in the values of robustness, the ‘tree
manager’ sends a ‘rejection’ message to the requesting agent with information
about the value of local robustness.

2. If there are no inconsistencies, the ‘tree manager’ either

a. updates and inserts the node that sent the ‘parent/child request’ in its tree
view. In this case, the ‘tree manager’ replies with an ‘acknowledgement’. If
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the update of the tree view is performed by replacing an existing node descrip-
tor with one with higher robustness, then a ‘removal’ message is sent to the
replaced node. Or,

b. it rejects the request and a ‘rejection’ message is sent. In this case, the existing
parent or children are more robust than the node that sent the request.

In both cases the reply-messages contain information that reflects the more recent
values of the robustness r.

3. a report is sent to the local ‘reaction manager’.

If the ‘tree manager’ receives an ‘acknowledgement’ of its request it performs:

1. an update of its tree view by inserting the new neighbour. If the update is a
replacement, it sends a ‘removal’ messages to the replaced node.

2. a report to the local ‘reaction manager’.

The ‘rejection’ message triggers the following:

1. a report to the local ‘reaction manager’.

Finally, in case of a ‘removal’ message, ‘tree manager’ performs:

1. removal of the parent or one of the children.
2. a report to the local ‘reaction manager’.

These messages form the basic interactions among the AETOS agents to config-
ure the tree overlay connections.

Reaction Manager: It receives reports from the ‘tree manager’ concerning the
configuration of the tree connections. Based on these reports, it triggers the ap-
propriate reconfigurations in the ‘reconfiguration manager’.

An upgrade reconfiguration is triggered when a new parent or the last child is
added in the candidate parents or children respectively. A downgrade reconfigura-
tion is applied when a ‘parent of child request’ is rejected or a removal is performed
in a parent or child. Finally, the initialising reconfiguration is performed before the
upgrade or downgrade reconfigurations to overwrite the old ones.

6.3 Service Layer architecture

The interactions of the components in the ‘self-organisation agent’ can be outlined
in the following 3-layer hierarchy:

PAROS: The ProActive Robust Overlay Sampling is the underlying overlay that
provides high robustness in the tree overlay. It guarantees that the network remains
connected and it is not clustered due to node departures or failures.
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ARMOS: The Adaptive Rank-based Middleware Overlay Service is a proximity-
driven reconfigurable overlay. It incorporates the ‘tree manager’, the ‘proximity
sampling’ and the ‘reconfiguration manager’. It is based on PAROS and supports
the connectivity of the tree overlay by providing candidate neighbours.

ATOM: The Adaptive Tree Overlay Management is responsible for configuring
the tree connections and provides feedback to ARMOS for improving the candidate
neighbours.

Fig. 6 The 3-layer hierar-
chical interactions of the
components within the ‘self-
organisation agent’. The num-
bers denote the sequence of
interactions between the com-
ponents. The arrows (3), (4),
(5) and (6) depict the feed-
back loop which forms the
core of adaptivity in AETOS.

Figure 6 outlines the 3-layer hierarchy and the components of the ‘self-organisa-
tion agent’. The sequence of interactions is as follows: (1) ‘random sampling’ pro-
vides periodically random samples to the ‘proximity manager’. From these random
samples, the ones with close proximity are selected and stored in the proximity view.
(2) ‘proximity sampling’ exchanges node descriptors with close proximity nodes for
improving the proximity view. (3) Periodically, the ‘proximity manager provides the
best candidate neighbours to the ‘tree manager’. The latter interacts with these can-
didates to establish tree connections. (4) The result of these interactions is reported
to the ‘reaction manager’ (5) that triggers the appropriate reconfigurations in the
‘reconfiguration manager’. (6) Finally, the proximity view is reconfigured and new
candidate neighbours can be provided to the ‘tree manager’.

Note that the feedback loop between the ‘proximity manager’, ‘tree manager’,
‘reaction manager’ and ‘reconfiguration manager’ forms the core of adaptivity in
AETOS.
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7 System control agent

The ‘system control agent’ acts as a proxy between the ‘application agent’ and ‘self-
organisation agent’. It keeps information about the registered overlays and provides
this information to the ‘self-organisation agent’. It also receives the application re-
quirements for each overlay and monitors the self-organisation process. With this
information, it can control locally the bootstrapping and termination of the self-
organisation.

Bootstrapping: The ‘system control agent’ initially guarantees that the robustness
values are unique. This is achieved by assigning a unique comparable random num-
ber in the robustness value r. It then feeds the robustness r and the number of
children c = n−1 to the ‘self-organisation agent’. Therefore, the ‘self-organisation
agent’ is able to start executing its component tasks.

Termination: Termination is based on the expected response time tr. The ‘system
control agent’ monitors the ‘self-organisation agent’. When the runtime exceeds the
tr, it terminates the self-organisation.

At this moment of local convergence the agent, (i) stops the participation of the
agent in the self-organisation process and (ii) enables the ‘tree manager’ to provide
the tree view to the application. Note that, the node can be still contacted when is
not participating in the self-organisation. In this case, it notifies the node about its
current terminated state.

In this termination approach, the application is the one that defines, through its
requirements, when the self-organisation terminates rather than the underlying AE-
TOS system. The motivation for this decision is that the stability of the tree overlay
is evaluated with respect to the application requirements and thus it must be the one
that influences the termination of the self-organisation.

8 Evaluation of the proposed approach

AETOS is implemented and evaluated in ProtoPeer [15], an asynchronous simula-
tion platform for large-scale distributed systems. ProtoPeer provides a generic inter-
face for enabling the step from single-machine to multiple-machines simulation and
finally to live deployment.

This section focuses on the evaluation of the ‘self-organisation agent’. The goal
of the evaluation is to reveal the cost-effectiveness of AETOS in the connectivity of
two different tree topologies. In this section, connectivity refers to the percentage
of the total number of nodes connected to the main tree. The convergence of con-
nectivity is investigated under varying length of the random view and two different
network sizes.

The input settings in the ProtoPeer simulation environment represent the ‘ap-
plication agent’. The ‘self-organisation agent’ is implemented as three services or
‘peerlets’ in ProtoPeer terminology. Each service corresponds to a layer in the ar-
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chitecture of Figure 6. In the first layer, the peer sampling service [26] is the imple-
mentation of the ‘random sampling’ component. In the middle layer, the ‘proximity
manager’ and the ‘reconfiguration manager’ are implemented. The implementation
of ‘proximity sampling’ is part of ongoing work and is not part of AETOS in the
results illustrated in this section. However, the implications of this missing compo-
nent are discussed in this section. The two components of the ATOM layer, the ‘tree
manager’ and ‘reaction manager’, are facilitated in a peerlet of the ‘self-organisation
agent’. Finally, the evaluation of the bootstrapping and termination by the ‘system
control agent’ is part of future work.

8.1 Simulation settings

Three group of experiments are performed in two different simulation environments.
Table 1 outlines the simulation parametrisation in these two environments. ‘Simu-
lation environment 1’ has 121 nodes. ‘Simulation environment 2’, a larger-scale
network, has 1093 nodes. The first two groups of experiments run for 2500 itera-
tions and the third for 400. The latter group of experiments runs for fewer iterations
due to restrictive memory scalability of the ProtoPeer measurement infrastructure.
The ProtoPeer environment supports bootstrapping of the system in a ring topology
in the first 6 iterations from which the peer sampling service and the components in
the higher levels are initialised.

Table 1 Simulation environments
Parameter Simulation Environment 1 Simulation Environment 2

Number of nodes (N) 121 1093
Number of children (c) 3-5 3-5
View selection policy swapper swapper

Random view length (|R|) 4-20 40
Candidate parents length (|P|) 2 3
Candidate children length (|C|) 4 5

Number of iterations 2500 400
Requests frequency 2 per iteration 2 per iteration

The swapper selection policy used within the peer sampling service [26] is used
to increase randomness in the local node samples. In ’simulation environment 1’ the
length of the random view R is varied between 4-20. In ’simulation environment 2’
the length of the random view R is fixed to 40. The length of the view of candidate
parents is chosen to be smaller than the view of the candidate children and is |P|= 2,
|P|= 4 for the first and |P|= 3, |P|= 5 for the second simulation environment.

Finally, nodes are organised in two tree topologies: (1) a tree for which the num-
ber of children to which the ‘application agents’ try to connect is 3 and (2) a tree
for which the number of children to which the ‘application agents’ try to connect
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is 5. As a result with a fixed number of nodes, the trees have different number of
levels. The robustness r assigned to the ‘self-organisation agent’ is a unique random
number between 0 and 100. Note that in every iteration the ‘self-organisation agent’
potentially sends one parent and one child request, thus the frequency of requests is
2 per iteration.

8.2 Results

The first group of experiments runs in ‘simulation environment 1’ in which the
number of children to which agents aim to connect is equal to 3. Figure 7(a) illus-
trates the convergence of connectivity by varying the length of the random view.
Figure 7(b)-(e) depicts the communication cost of AETOS expressed in the number
of messages generated by the ATOM layer of the ‘self-organisation agent’.

The second group of experiments also runs in ‘simulation environment 1’ but in
this case the number of children to which agents aim to connect is equal to 5. Fig-
ure 8(a) illustrates the convergence of the connectivity by varying the length of the
random view. Figure 8(b)-(e) depicts the communication cost of AETOS expressed
in the number of messages generated by the ATOM layer of the ‘self-organisation
agent’.

Finally, the last group of experiments runs in ‘simulation environment 2’ for
c = 3 and c = 5. Figure 9 illustrates the connectivity convergence in this settings.

In summary, the above results show that AETOS can achieve a high degree of
connectivity in both simulation environments. AETOS converges to 90% connectiv-
ity in less than 150 iterations. An exception is the case of ‘simulation environment 2’
with c = 3, in which connectivity approaches 60% in the 400th iteration. Section 8.3
explains in detail the behaviour of AETOS in these simulation experiments.

8.3 Discussion of Experimental Results

The results reveal that a certain percentage of connectivity can be achieved within
relatively few iterations. For example, 50% connectivity can be achieved in less
than 100 iterations in ‘simulation environment 1’ and between 150-400 iterations in
‘simulation environment 2’. In contrast, for connectivity higher than 98% AETOS
convergence lasts much longer, requiring 436 iterations in ‘simulation environment
1’. In this environment, increasing connectivity from 90% to 98% requires more
than 250 additional iterations. This effect is more significant in ‘simulation envi-
ronment 2’ in which connectivity seems to converge 10%-30% more slowly than
‘simulation environment 1’. The peer sampling service provides a bounded random
search space and thus convergence speed decreases as the size of the network or the
topology complexity increases. The connectivity jump from 50% to about 80% in
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Fig. 7 Cost-effectiveness of AETOS in ‘simulation environment 1’ for c = 3. (a) Connectivity
convergence for different length of random views. (b)-(e) Number of messages generated by the
ATOM layer of the ‘self-organisation agent’ for |R|= 20.

the 150th iteration in Figure 9 is explained by the connection of a large branch of
nodes to the main body of the tree.

The communication cost of the ATOM layer is related to three things: (i) request
frequency, (ii) convergence of the system and (iii) effectiveness in the termination of
self-organisation. The parent and child requests decrease during convergence 40%-
45% and 25%-35% respectively. This is caused by the effect of the reconfigurations
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Fig. 8 Cost-effectiveness of AETOS in ‘simulation environment 1’ for c = 5. (a) Connectivity
convergence for different lengths of random views. (b)-(e) Number of messages generated by the
ATOM layer of the ‘self-organisation agent’ for |R|= 20.

and the increase in the tree connectivity. In contrast, rejections increase 25%-30%
as there are more nodes already connected that can potentially reject requests. After
convergence, the number of messages is stabilised. At this point the system can
be terminated and thus, alleviate the network from this constant communication
overhead. Removal and acknowledgement messages decrease proportionally to the
convergence time. This is expected, as nodes in a tree with 100% connectivity do
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Fig. 9 Connectivity convergence in ‘simulation environment 2’ for c = 3 and c = 5.

not perform any removals or acknowledgements. Note that, the communication cost
of the PAROS layer is constant and dependent on the network size and the gossiping
period.

An increase in the length of random views makes connectivity convergence faster
in both simulation environments. This can be explained by the better global knowl-
edge that the ‘self-organisation agents’ have of the system. Therefore, they can im-
prove the quality of the candidate neighbours select to which they potentially con-
nect. Finally, the number of children c influences the cost-effectiveness of AETOS
significantly. A different number of children results in different topologies. In each
simulation environment setting of this section, trees have the same network size
with a different number of levels. Connectivity increases from 81% (c = 3) to 97%
(c = 5) in ‘simulation environment 1’ and from 50% (c = 3) to 77% (c = 5) in ‘sim-
ulation environment 2’ at the 400th iteration. Furthermore, communication cost also
decreases 17% by increasing c in ‘simulation environment 1’.

The future addition of ‘proximity sampling’ is expected to enhance the quality of
the proximity view. More specifically, it is expected to (i) decrease the connectivity
convergence time as the self-organisation agent will update the proximity view faster
after the performed reconfigurations and (ii) decrease the communication cost of the
ATOM layer as it is related to convergence time.
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9 Conclusions and future work

This chapter proposes AETOS, the Adaptive Epidemic Tree overlay Service. AE-
TOS is an agent-based system that builds and maintains application-independent
tree overlays, on demand. To this purpose three local agents are defined to (i) ab-
stract application requirements to self-organisation requirements, (ii) self-organise
nodes in various optimised tree topologies based on these requirements and (iii)
control the bootstrapping and termination of self-organisation. Experiments show
that a high level of connectivity can be acquired, and that cost-effectiveness of self-
organisation is highly correlated to the available local knowledge, the tree topology,
and the network size.

These results are promising. Further research will include extension of the cur-
rent system with a ‘proximity sampling’ component, study the effects of a dis-
tributed simulation environment, and application of AETOS in a more realistic do-
main.
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16. A. González-Beltrán, P. Milligan, and P. Sage. Range queries over skip tree graphs. Comput.
Commun., 31(2):358–374, 2008.

17. H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R. Zhang. Speeding up search in peer-
to-peer networks with a multi-way tree structure. In SIGMOD ’06: Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pages 1–12, New York, NY,
USA, 2006. ACM.

18. M. Jelasity, A. Montresor, and O. Babaoglu. T-man: Gossip-based fast overlay topology con-
struction. Computer Networks, 53(13):2321 – 2339, 2009. Gossiping in Distributed Systems.

19. C. Y. Lee and H. Dong Kim. Reliable overlay multicast trees for private Internet broadcasting
with multiple sessions. Comput. Oper. Res., 34(9):2849–2864, 2007.

20. J. Leitao, J. Pereira, and L. Rodrigues. Epidemic Broadcast Trees. In SRDS ’07: Proceedings
of the 26th IEEE International Symposium on Reliable Distributed Systems, pages 301–310,
Washington, DC, USA, 2007. IEEE Computer Society.

21. M. Li, W.-c. Lee, and A. Sivasubramaniam. DPTree: A Balanced Tree Based Indexing Frame-
work for Peer-to-Peer Systems. In ICNP ’06: Proceedings of the Proceedings of the 2006
IEEE International Conference on Network Protocols, pages 12–21, Washington, DC, USA,
2006. IEEE Computer Society.

22. Y. Li and W. T. Ooi. Distributed construction of resource-efficient overlay tree by approxi-
mating MST. In ICME, pages 1507–1510, 2004.

23. J. Liu and M. Zhou. Tree-assisted gossiping for overlay video distribution. Multimedia Tools
Appl., 29(3):211–232, 2006.

24. Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer video streaming systems. Peer-to-Peer
Networking and Applications, 1(1):18–28, 2008.

25. R. P. Lopes and J. L. Oliveira. Software agents in network management. In ICEIS, pages
674–681, 1999.

26. Márk Jelasity and Spyros Voulgaris and Rachid Guerraoui and Anne-Marie Kermarrec and
Maarten van Steen. Gossip-based peer sampling. ACM Trans. Comput. Syst., 25(3):8, 2007.

27. P. Merz and S. Wolf. TreeOpt: Self-Organizing, Evolving P2P Overlay Topologies Based On
Spanning Trees. In SAKS’07, Bern, Switzerland, 2007.

28. E. Pournaras, G. Exarchakos, and N. Antonopoulos. Load-driven neighbourhood reconfigura-
tion of Gnutella overlay. Computer Communications, 31(13):3030–3039, 2008.

29. E. Pournaras, M. Warnier, and F. M. T. Brazier. A Distributed Agent-based Approach to
Stabilization of Global Resource Utilization. In Proceedings of International Conference of
Complex Intelligent and Software Intensive Systems (CISIS’09), March 2009.

30. E. Pournaras, M. Warnier, and F. M. T. Brazier. Adaptive Agent-based Self-organization for
Robust Hierarchical Topologies. In ICAIS ’09: Proceedings of the International Conference
on Adaptive and Intelligent Systems. IEEE, September 2009.

31. W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

32. G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Performance Analysis and Improvement of
Overlay Construction for Peer-to-Peer Live Streaming. Simulation, 82(2):93–106, 2006.



Self-optimised Tree Overlays using Proximity-driven Self-organised Agents 25

33. S.-W. Tan, G. Waters, and J. Crawford. MeshTree: Reliable Low Delay Degree-bounded
Multicast Overlays. Parallel and Distributed Systems, International Conference on, 2:565–
569, 2005.

34. C. Tang and C. Ward. GoCast: Gossip-Enhanced Overlay Multicast for Fast and Depend-
able Group Communication. In DSN ’05: Proceedings of the 2005 International Conference
on Dependable Systems and Networks, pages 140–149, Washington, DC, USA, 2005. IEEE
Computer Society.

35. H. Tianfield and R. Unland. Towards self-organization in multi-agent systems and grid com-
puting. Multiagent Grid Syst., 1(2):89–95, 2005.

36. F. Wang, Y. Xiong, and J. Liu. mTreebone: A hybrid tree/mesh overlay for application-layer
live video multicast. In in IEEE ICDCS, page 49, 2007.

37. H. Zhuge and L. Feng. Distributed Suffix Tree Overlay for Peer-to-Peer Search. IEEE Trans.
on Knowl. and Data Eng., 20(2):276–285, 2008.


