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Abstract—Self-management of tree overlay networks for
distributed applications is the challenge this paper addresses.
Eight local adaptation strategies are introduced based on which
autonomous self-organized agents establish connections that
build and maintain a tree topology. Quantitative and qualitative
experimental evaluation illustrates and compares the effects of
adaptation strategies in the resulting tree topologies according
to a defined self-organization goal and four metrics: connect-
edness, connectivity, instability and robustness. This paper
concludes that further applicability of adaptation strategies in
other self-organization goals and topologies is promising.
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I. INTRODUCTION

A wide range of distributed applications rely on hi-
erarchical virtual networks for communication between
agents. These virtual networks, defined by overlay topolo-
gies, provide the basis for operations such as aggrega-
tion, information dissemination, decision-making etc. Var-
ious distributed applications are based on these opera-
tions, such as application-level multicasting [1], energy
self-management [2], [3] and distributed database manage-
ment [4]. Tree topologies are designed to optimize such
applications. For example, a broadcast tree overlay for
multimedia multicasting is designed to minimize latency
whereas, a tree structure in a distributed database is designed
to offer data redundancy.

In this paper, self-management refers to the emergence
of global qualities in a tree topology by using self-
organized agents with different behaviors. Self-management
of tree overlays influences performance of distributed ap-
plications [5], [6]. For example, in application-level mul-
ticasting, a ‘short’! self-organized tree is acquired with
agents sorted based on one or more pre-defined criteria [1],
e.g. bandwidth, agent availability etc. More robust agents
are placed near the root of the tree with the less robust
positioned further down in the tree.

Defining and designing local agent behaviors that collec-
tively emerge such complex tree topologies is challenging.
This paper proposes eight adaptation strategies that represent
organization preferences of agents. Adaptation strategies

In a ‘short’ tree, agents are connected with a high number of children.

control the parent and children selected by the agents of a
tree topology. When an agent applies these local strategies,
different tree topologies emerge. These topologies and their
effects are evaluated qualitatively and quantitatively based
on four performance metrics and a defined self-organization
goal.

The contributions of this paper are outlined as follows:

o The self-organization goal and its relation to a tree
overlay and its properties (Section III).

o Introduction of four performance metrics based on
which the self-organization goal is evaluated when
different adaptation strategies are adopted (Section III).

o Introduction of eight adaptation strategies based on
which an agent selects its parent and children. This is
the core contribution of this paper (Section IV).

« Qualitative and quantitative evaluation of adaptation
strategies in various simulation scenarios (Section V).

Adaptation strategies provide a flexibility to agents to
adopt different connection preferences. Unlike existing self-
organization systems that are based on a single static
ranking function [7], [8], [9], [10], adaptation strategies
have different effects in the resulting self-organized tree
topologies. Based on these effects, performance trade-offs
can be explored regarding different application requirements
and domains.

II. PROBLEM DESCRIPTION

This paper focuses on the problem of self-managing tree
overlay networks for distributed applications. This paper
shows that self-management of tree topologies emerges
from a collective behavior of self-organized agents. Defining
and designing eight adaptation strategies for achieving this
collective behavior is the goal of this paper.

Every agent in a network is ranked according to a criterion
defined by a distributed application. The criterion can be
related with the availability of agent, its reliability, trust,
bandwidth etc. An agent is ranked based on the value of such
a criterion. An agent is part of a tree overlay by establishing
connections with a parent agent and children agents. From
an agent point of view, the problem is which ranked parent
and children an agent should connect with to maximize



the performance of an application according to the chosen
criterion.

This paper defines four performance metrics and the prop-
erties of a tree topology in which agents aim to self-organize
themselves. The effects of adaptation strategies in self-
organization are evaluated. Conclusions can be drawn about
the effects of different collective behaviors in self-organized
tree topologies. Based on these effects, performance trade-
offs can be explored regarding different application require-
ments.

III. SELF-ORGANIZATION GOAL

Assume a network of n agents. Each agent ¢ has a
rank value r; in the range [0,1). This rank is assigned
by the application and represents a chosen performance
criterion. Assume also that each agent has an agent degree d.
Therefore, each agent can support a maximum of Kk =d —1
children and 1 parent. Each agent acquires a higher ranked
agent for its parent and lower ranked agents for its children.

The goal of self-organization is the formation of a bal-
anced k-ary tree that (i) is fully connected (one and only
one tree) (ii) is sorted according to the rank of agents and
(iii) agents are connected with a maximum number of other
agents d = k + 1 except for the leaves (d — k = 1) and the
root (d —1=k).

Next assume that given an initial state with n disconnected
agents, every agent selects its parent and children according
to a strategy j. Note that for now, a strategy represents
which rank values are preferred. A detailed illustration
is provided in Section IV. Tree topologies are evaluated
based on convergence of the following performance metrics:
(1) connectedness, (ii) connectivity (iii) instability and (iv)
robustness.

Connectedness is the proportion of agents connected to
the tree with the highest number of agents (the main tree).
The connectedness ¢ of a strategy j for a forest F' of m
trees {To,T1,...,Tm—1} = F is defined as follows:

o) = max(|Tol, |T1|, -, [ Tm-1]) )
n

In contrast, the tree connectivity for a strategy j is defined
as the number of connections established in the agents in
relation to the maximum number of connections that can
be supported, that is the agent degree d. Connectivity is
interpreted as the capability of a strategy to create the
maximum number of links required for the formation of
the optimum topology. It is calculated by dividing the
actual connectivity ¢(j) achieved by the strategy j over the
optimum connectivity ¢’ of an optimum k-ary tree as defined
in this section:

() = Y )

The actual connectivity ¢ of a strategy j is the average
connectivity of all agents. This is the number of parents

a2 = 0|1 and children y < k of every agent ¢ in relation to
the agent degree d such that:
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Similarly, the optimum connectivity ¢’ is the average
connectivity of all agents in an optimum k-ary tree. It
is calculated by determining the aggregate result of the
maximum agent connectivity for all the agents n * d and
subtracting d — 1 connections for each leaf and 1 connection
for the root. The upper bound for the number of leaves [ is
calculated as follows [11]:

1 = klng (k—1)+log; n—1 4)

Based on the knowledge about the number of leaves in the
optimum tree, the optimum connectivity can be summarized
as:
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Instability is another metric introduced in this paper for
evaluation of self-organization in tree topologies. Instability
indicates numerically how much connectivity changes during
convergence. High instability for a strategy 7 means that this
strategy imposes many connection changes before finding
the best children and parent for each agent. In contrast, low
instability does not result in frequent changes in the parent
and children connections of agents. Low instability does not
necessarily imply a better strategy. This is because a strategy
‘trapped’ in a local optimum is very stable but not flexible
enough to ‘jump’ to a more optimum connection [12].

The instability s for a strategy j is calculated by comput-
ing the average standard deviation s;(j) of agent connectiv-
ities over a period of time 7' such that:
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Note that, the instability s;(j) for an agent ¢ and a strategy
7 is calculated using the classic statistics formula of standard
deviation. The ¢;(j) is the average connectivity of an agent
i and a strategy j over a time period T. The c!(j) is the
connectivity of agent ¢ at time ¢ using strategy j. The final
instability in the tree built with strategy j is calculated by
averaging the instability values of all the agents as illustrated
in Formula (6).

Finally, the robustness g of the tree expresses the quality
of the sorting process and agent connections. It is associated
with the ranking fitness of agents with their neighbors.
This paper correlates the robustness ¢ with the the relative



ranking distance between the agents and their parents. This
is the distance 7, — r; that an agent 4 has from its parent
p in relation to the maximum distance that can have from
the highest ranked agent in network. Assuming agents with
uniformly distributed ranks, the maximum possible ranking
distance is approximately 1 — r;. Therefore, the robustness
q for a strategy j is defined as:
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Although there are many graph configurations that create
a balanced and connected k-ary tree, there is one and only
one sorted tree that maximizes the robustness, presented by
Formula (8), given the constraints of this problem.

IV. TOPOLOGY SELF-MANAGEMENT

This section illustrates how an agent selects to connect to
its ‘best’, according to a strategy, ranked parent and children.
In contrast to a single static preference scheme, pre-defined
from a fitness function, this paper shows that an agent has the
option to adopt different ranking preferences for selecting
its parent and children. These different preferences form the
adaptation strategies that are able to self-organize agents into
different tree topologies.

The goal of agents is to self-organize themselves in a
sorted tree topology according to a criterion defined by an
application, as mentioned in Section III. Each agent in the
network performs the following feedback loop of five tasks:

1) Collect information about other agents in the network
and form its views.

2) Select agents from views that are in close (rank)
proximity according to an adaptation strategy. Sort the
selected ranked agents in a list: the search space for
parent and children

3) Select a parent and children from the search space
according to an adaptation strategy.

4) Request connections from the selected parent and
children.

5) Receive an acknowledgement or rejection for each
connection. Based on this outcome:

a) Establish new connections and removes older
ones.

b) Adapt the agent’s search space to improve future
selections of a parent and children.

Figures 1 outlines the local feedback loop of the five tasks
executed by an agent. Based on this loop, agents are self-
organized in a sorted tree topology as defined in Section III.
These steps are executed periodically and the time period
is a parameter of controlling performance, processing and
communication overhead.

5a. Establish Outcome
Connections

4. Request
Connections

Selected Parent & Children

5b. Adapt

[3. Select Parent &]
Children

2. Select Ranked |
¢ Agents ) Search Space

[ T

1. Collect Agent Information

Figure 1. Local execution of five agent tasks. The dotted line encloses
the tasks controlled by adaptation strategies.

A. Determining the Views

An agent discovers information about other agents in
network by performing gossiping information exchange [9],
[13]. This information is the views of an agent and concerns
the contact address of other agents and their rank values
according to the chosen criterion. The view has a limited
size and is thus not global. An agent gossips periodically
and updates its views with information about other agents.
Collected agents can be random [13] or in close (rank)
proximity [9] according to the criterion. A random view
guarantees that the network remains fully connected and is
resilient to agent failures. A proximity view clusters agents
according to their ranking distance®. By keeping agents in
close proximity, searching with the goal of self-organization
becomes more efficient.

B. Determining the Search Space

An agent selects its parent and children from a search
space. This is a sorted list of agents received from views.
The search space is adaptive as constraints are applied in
the ranges of rank values that are allowed to be present in
this sorted list. For example, assume that every agent ¢ has a
unique rank 7; in the range [0,1). Agent ¢ adapts its search
space to contain ranked agents in the range [0,7;) U (r;, 1).
Therefore, the constraint in this adaptation is the exclusion
of r; from the search space.

Adaptations enable agents to perform selections of their
parent and children within a range of ranks that im-
proves system performance. In this way, convergence can
be achieved to the sorted tree topology with the desired
properties as defined in Section III. Section IV-E provides

2The ranking distance between two agents  and j refers to their euclidean
distance |r; — 7|.



examples and explains in detail the applied adaptations in
the search space.

C. Adaptation Strategies

An agent connects with its parent and children based on
one of the eight strategies depicted in Figure 2 and illustrated
below:

o Presbyopic: An agent selects the highest ranked parent
and the lowest ranked children from its search space.

o Myopic: An agent selects the lowest ranked parent and
the highest ranked children from its search space. The
defined preferences of the ‘myopic’ strategy are the
opposite of the ‘presbyopic’ strategy.

o Humble: An agent selects the lowest ranked parent and
the lowest ranked children from its search space.

o Greedy: An agent selects the highest ranked parent
and the highest ranked children from its search space.
Note that, these preferences are the opposite ones of
the ‘humble’ strategy.

« Top-down: An agent selects the highest ranked children
from its search space. Selection of a parent is not
performed. The parent connection is established from
received requests.

« Bottom-up: An agent selects the lowest ranked parent
from its search space. Selection of children is not
performed. The children connections are established
from received requests.

o Top: An agent selects the highest ranked parent from
its search space. Selection of children is not performed
and children connections are established from received
requests. Note that, the preference of this strategy is
the opposite of ‘bottom-up’.

« Bottom: An agent selects the lowest ranked children
from its search space. Selection of a parent is not
performed and a parent connection is established from
received requests. Note that, the preference of this
strategy is the opposite of ‘top-down’.

The eight adaptation strategies represent the eight, in total,
combinations of preferences that agents can have for high
or low ranked children and/or parents. This is explained as
follows: An adaptation strategy represents the preference
to high ranked agents or low ranked agents (2 options).
Furthermore, an agent may prefer to select (i) only higher
ranked agents than itself (parent), (ii) only lower ranked
agents than itself (children) or (iii) both. This provide 3
more options in the selection scheme of agents. Therefore,
the total number of preference combinations that an agent
can have for selecting its parent and children are 23 = 8.
These eight combinations are the adaptation strategies of
agents.

Adopting preferences to both low and high ranked agents
plays a crucial role in the self-organized topologies. For
example, assume that highly ranked agents represent robust
agents based on a performance metric. Intuitively, a ‘greedy’

Search Space Local Rank
Strategy Children Parents
low high | low high
Presbyopic | ¢/ v
Myopic v v
Humble v 4
Greedy v v
Top-down v
Bottom-up v
Top v
Bottom v
Figure 2. The ranking preferences of agents for parents and children in

each adaptation strategy.

strategy can provide high robustness as all the agents tend to
connect with the highest possible ranked agents. In contrast,
the ‘humble’ strategy is based on low ranked parents and
children. This does not mean necessarily that the formed
topologies are not robust. From the local viewpoint of a
‘humble’ agent, a connection with a low ranked child is not
robust. However, from the local viewpoint of this child, the
connection is highly robust. Section V illustrates how these
small differences in the local preferences are reflected in the
emerged tree topologies.

Note that, the search space is filled with ranked agents
according to the same preferences of the adopted adaptation
strategy. This means that if an agent selects high ranked
parents and children (‘greedy’ strategy), the proximity for
filling the search space is also based on the highest rank-
ing distance. Strategies do not only concern the selection
preferences but also how the search space is adapted. More
information about adaptations are provided in Section I'V-E.

D. Configuration of Connections

Links in a tree topology are bidirectional. This means
that a connection is acknowledged and established between
the two agents that form a link in a tree. Therefore, when
an agent selects a parent and children based on a strategy,
it sends a request to each of them thereby acquiring a
connection. When the parent or child receives the request,
it checks if the new connection is ‘better’, according to
its strategy, than a connection that the agent already has.
Specifically, the parent or child evaluates if the rank of this
agent matches its preferences for low ranked or high ranked
agents. Note that, the number of connections established
respect the agent degree d of agents. Therefore, a new
connection may replace an existing one.

Assume the following example scenario: A ranked agent
r; = 0.5 is connected with a ranked agent 7, = 0.7 and



adopts the ‘greedy’ strategy. Agent i receives two requests
from the ranked agents r, = 0.6 and r, = 0.8. The
connection with the ranked agent r, = 0.6 is rejected. The
ranked agent 7, = 0.7 with which there is an established
connection has a higher rank than r,. Therefore, r, is
preferred according to the ‘greedy’ strategy. In contrast, the
ranked agent 7, = 0.8 has higher rank than r, = 0.7. In this
case, the established connection with agent p is removed and
a new one is established with agent b. Note that, an agent
is allowed to have one and only one parent.

To sum up, a new improved connection is established
either (i) when an agent selects a parent or child and a con-
nection request sent to this selected agent is acknowledged,
or (ii)) when a connection request is received by an agent
and the requested agent is ranked ‘better’ according to the
adopted strategy.

E. Adaptations

An agent uses the outcome of its connection requests as a
feedback mechanism to adapt its search space. The acknowl-
edgment of a request is named a positive feedback for both
agents that establish a parent-child link. The rejection of a
request or a removal of a connection is named a negative
feedback and it is applied to the requester agent and the
removed parent or child respectively.

Based on this feedback, an agent triggers adaptations to its
the search space. As mentioned in Section IV-B, adaptations
change the range of ranked agents that can be present in the
sorted list (search space) from which parents and children
are selected. The new ranges of ranks in the search space
change in reference to the selected parent or child that causes
the positive or negative feedback. Assume a ranked agent
r; = 0.5 that adopts the ‘greedy’ strategy. Initially, as given
in the example of Section IV-B, the range of ranks in the
search space is [0,7;) U (r4,1).

Assume also that agent ¢ selects the ranked agent 7, = 0.7
as parent. Agent a accepts the connection and this pro-
vides positive feedback to the search space of agent «.
Agent ¢ adapts the range of ranks in its search space to
[0,7;) U (0.7,1) given, for example, the ‘greedy’ strategy.
This adaptation provides a constraint in the new selected
parent to be ranked higher than 0.7. In this case, this
improvement is defined by the ‘greedy’ strategy.

In contrast, negative feedback is applied after a rejection
or removal of a connection. Assume that after the latter
adaptation, agent ¢ selects from the range [0,7;) U (0.7, 1)
the ranked agent 7, = 0.9. Assume also that agent b has
higher ranked children than the ranked agent r; = 0.5. Agent
b rejects the connection and therefore, agent ¢ adapts its
search space based on negative feedback. The new ranges of
ranked agents are [0, 7;)U(0.7,0.9). This adds an additional
constraint for improving the parent connection: A new
selected parent should be higher than 0.7 but lower than
0.9.

Finally note that if the search space cannot provide new
parents and children, the ranges are reset back to [0,r;) U
(r;,1) and adaptations apply again.

V. EVALUATION

This section illustrates the parametrization of simulation
environment and the results from the evaluation of adapta-
tion strategies.

A. Simulation Environment

The self-organization agent and its adaptation strategies
are implemented and simulated in ProtoPeer [14], a toolkit
for prototyping distributed systems. The tested network con-
sists of 1500 agents. Every agent is assigned a random rank
value in [0, 1) derived from an abstract application criterion.
An agent can connect with a maximum number of children
k = 4. The system runs for up to 400 execution rounds,
referred to as epochs in ProtoPeer terminology. During each
epoch, the views of agents are updated 5 times using gossip
information exchange [9], [13]. Moreover, the feedback loop
of agent tasks, illustrated in Figure 1, is executed 2 times
per epoch. Therefore, an agent sends 2 connection requests
per epoch at maximum.

Eight tree topologies are simulated, one for each adap-
tation strategy. Agents adopt the same strategy for each
simulated topology. The resulting topologies are evaluated
quantitatively according to connectedness, connectivity, in-
stability and robustness as illustrated in Section III. Quali-
tative comparison is also provided based on visualization®
of the resulting tree topologies. Results are compared to the
optimum values of the ‘ideal tree” when this is possible. The
‘ideal tree’ is simulated based on a centralized tree building
mechanism. The performance metrics of the ‘ideal tree’ are
computed mathematically and based on simulations. Finally,
the communication cost of the strategies is outlined by calcu-
lating the aggregate number of requests, acknowledgments,
rejections and removals sent by all agents in network.

B. Results

The purpose of the evaluation of strategies is to show
which strategy is the best for self-organization of the tree
topologies illustrated in Section III and evaluate the effect
of each strategy in the formed topology.

Figure 3 illustrates the convergence of connectedness for
the eight strategies. ‘Top-down’ and ‘myopic’ in Figure 3a
perform the best. The ‘top-down’ strategy approaches 100%
connectedness. Note that convergence requires 50 epochs to
approach the average maximum values. The ‘bottom-up’ and
‘greedy’ strategies in Figure 3b have 81.85% and 80.21%
average connectedness respectively. However, note that the
‘bottom-up’ deviates 2.5% more than the ‘greedy’ strategy.

The ‘humble’ and ‘presbyopic’ strategies in Figure 3c
have a lower average connectedness of 79.30% and 60.30%.

3Visualization is based on the JUNG library [15].
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Figure 3. Convergence of connectedness for the eight adaptation strategies.
(a) ‘Top-down’ and ‘myopic’. (b) ‘Bottom-up’ and ‘greedy’. (c) “‘Humble’
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‘Presbyopic’ deviates 5.5% more than ‘humble’. Finally, the
‘top” and ‘bottom’ strategies perform the worst. “Top’ con-
verges to an average connectedness of 55.99%. The ‘bottom’
strategy seems completely inappropriate with 0.99% average
connectedness. Agents in the ‘bottom’ strategy try to connect
with the lowest ranked agents that is possible. This concept
is opposing to the self-organization goal and therefore agents
cannot establish connections.

For the evaluation of connectivity, the optimum connec-
tivity ¢ is calculated. First, the number of leaves must be
counted. From Formula (4), the number of leaves are [ =
Klogk (k=1)+logp n—1 — 45.068 ~ 1195 Then, the optimum
connectivity can be calculated according to Formula (5) as
¢ = A=Al (150045 - 1125%4—1)/(1500%5) ~
0.4.

Figure 4 illustrates the convergence of the average connec-
tivity ¢ for the eight strategies. The ‘top-down’, ‘bottom-up’,
‘myopic’ and ‘humble’ strategies converge to the optimum
connectivity as shown in Figure 4a and Figure 4b. The first
two achieve faster convergence and fewer deviation from the
optimum value of 0.4. ‘Greedy’ has an average connectivity
of 0.36 over 400 epochs as shown in Figure 4c. At the same
figure, ‘presbyopic’ follows with average connectivity of
0.29 during convergence time. Finally, the ‘top’ and ‘bottom’
strategies in Figure 4d perform the worst with 0.26 and 0.14
average connectivity during convergence time.

For the evaluation of tree robustness, the optimum value
is measured by building and simulating the ‘ideal tree’. The
optimum robustness value is 0.74 in this case. Figure 5
illustrates the convergence of robustness for the eight adapta-
tion strategies. Figure 5a shows that the ‘top-down’ strategy
approaches the optimum value with the ‘greedy’ strategy
reaching 0.66 maximum robustness and 0.61 average robust-
ness. Note that the ‘top-down’ strategy requires the search
space adaptations to achieve this robustness value. Without
adaptations, it only reaches the value of 0.5. ‘Presbyopic’
and ‘top’ follow with 0.54 and 0.49 average robustness
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(a) ‘Top-down’ and ‘bottom-up’. (b) ‘Humble’ and ‘myopic’. (c¢) ‘Greedy’
and ‘presbyopic’. (d) “Top’ and ‘bottom’.

respectively as shown in Figure 5b. Note that, although
the ‘top’ strategy does not achieve high connectedness
and connectivity, its robustness is high. The selection of
highly ranked parents together with the effect of adaptations
guarantee that the few established connections are highly
robust.
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The ‘myopic’ and ‘bottom’ strategies, illustrated in Fig-
ure 5c, do not provide highly robust topologies. The average
robustness achieved is 0.47 and 0.27 respectively. Finally,
‘humble’ and ‘bottom-up’ perform the worst as shown in
Figure 5d, with 0.25 and 0.21 average robustness respec-
tively. Selecting the low ranked parents does not benefit the
leaves of the tree. In this case, the agents that are in close
proximity are most probably siblings (or belong to the same
level in the tree), rather than potential parents in the level
above.

The instability of the strategies in the formed topology
is measured as well. Note that, for example, an average



instability value of 1/d = 1/5 = 0.2 means that, on average,
agents add or remove one connection in every epoch during
runtime. The lowest instability of 0.1 is achieved by the
‘bottom’ strategy as it hardly introduces any connections. As
mentioned in Section III, the system is ‘trapped’ in a local
optimum of this strategy. Agents in the ‘bottom’ strategy try
to connect with the lowest ranked children. This acts as an
opposing force to self-organization goal.

The ‘top-down’ strategy achieves a very low instability
of 0.12. Given that the ‘top-down’ strategy performs the
best in the illustrated experiments, its low instability means
that the system requires a minimal number of adaptations
and changes in the connections to build the topology. The
‘top’, ‘presbyopic’, ‘greedy’ and ‘myopic’ strategies follow
with 0.13, 0.13, 0.14 and 0.17 instability values respectively.
Finally, ‘humble’ and ‘bottom-up’ have the highest insta-
bility of 0.2. Note that, the average instability of agents
for all strategies is higher (s = 0.2) for agents with rank
values around 0.7 and higher. These are the ones that should
be connected with the leaves according to self-organization
goal.

Finally, there is a significant difference in communication
cost of the strategies. The ‘bottom-up’ and ‘myopic’ strate-
gies have the highest communication cost with 7883 and
6703 average number of messages per epoch. This means
that these two strategies heavily rely on adaptations for
building the tree topology. Therefore, a high number of
connections and disconnections are performed during run-
time. The ‘top’, ‘humble’, ‘top-down’ and ‘greedy’ strategies
follow with 5967, 5838, 5453 and 5446 average number of
messages per epoch. The ‘presbyopic’ strategy consumes
4297 average number of messages per epoch. Adaptations
are not effective in this case and therefore, agents do not
perform easily connections and disconnections. The selected
parents and children are ranked either close to O or 1,
bounded to the endpoints of the range of ranks in the
search space. The same holds for the ‘bottom’ strategy that
generates on average 2359 messages per epoch.

Figure 6 visualizes the generated topologies for every
strategy at four time points*. The topology generated by the
‘top-down’ strategy clearly resembles the optimum topology
the most. The topology of the ‘top-down’ strategy is the
most balanced and has the fewest disconnected agents. The
‘greedy’ strategy also generates a robust topology, however,
a higher number of disconnected agents are present. The
‘myopic’, ‘bottom-up’ and ‘humble’ strategies are character-
ized by tree topologies with ‘long’ branches that correspond
to groups of non-optimal connections. The ‘presbyopic’ and
‘top’ strategies depict a different topological feature. The
forest is clustered in two large trees. Both seem balanced and
robust to a high degree as Figure 5b also indicates. However,

4In Figure 6, the blue agents denote the ones that form the main tree. In
contrast, the red agents represent the ones that are disconnected from the
main body of the tree.

the two trees do not manage to be merged and, therefore,
the connectedness and connectivity of these strategies are
low. Finally, no tree can be distinguished in the forest of
the ‘bottom’ strategy. The agents are either disconnected or
form small branches.

Optimum

Epoch 50 Epoch 150

Epoch 250 Epoch 350

’ Ty

Myopic Presbyopic

Greedy Humble

Top-
down

Bottom-
up

Top

Bottom

Figure 6. Visualization of the optimum tree topology and graphs of the
eight adaptation strategies during convergence. Graphs are visualized in a
radial layout that depicts the quality of the trees.

In all strategies, adaptation plays a crucial role, especially
as far as robustness is concerned. Without adaptations, the
‘top-down’ strategy, which performs the best in the illus-
trated experiments, only reaches 0.5 maximum robustness.



VI. DISCUSSION AND FUTURE WORK

Results reveal that given the self-organization goal of
Section III, the ‘top-down’ strategy performs the best for the
four performance metrics this paper distinguishes. Commu-
nication cost is also low but not the minimum one compared
to other strategies.

Two performance trade-offs are identified for the other
strategies:

o Communication cost versus connectivity: ‘Presby-
opic’ has a low communication cost but also low
connectivity. ‘Bottom-up’ has high communication cost
but also high connectivity.

o Connectedness versus robustness: ‘Greedy’ achieves
low connectedness but high robustness. ‘Myopic’
achieves high connectedness but low robustness.

The ‘bottom’ strategy is inappropriate for this self-
organization goal. However, note that, this strategy has a
minimum communication cost and therefore diminishes the
negative effects of its adoption.

A. Self-organization

Self-management of tree topologies based on the proposed
adaptation strategies extends the concept of using a single
and static fitness function to organize and optimize such
topologies. Most existing self-organization mechanisms [7],
[8], [9], [10] are based on a fitness function as part of their
design. In these cases, agents are designed with one prefer-
ence scheme on the basis of which neighbors are selected.
This restricts their ability to generate tree topologies with
different effects without either redesigning or introducing a
new fitness function.

This paper explores eight adaptation strategies for tree
topologies. Other topologies and self-organization goals are
focus of current research. In most self-organization method-
ologies, preferences of agents and, therefore, their collective
behavior, define the resulting topology. This means that by
introducing and defining the concept of a measured ranking
distance between agents in other topologies, adaptation
strategies are potentially able to determine the preferences
of agents and how the ranking distance is measured. This is
topic of future research.

B. Adopting Adaptation Strategies

This paper shows the effects of adaptation strategies for a
defined self-organization goal. An agent adopts an adaptation
strategy as a system parameter within a homogeneous system
of agents that all adopt the same strategy. This is the first step
for showing the applicability of the adaptation strategies.

However, new possibilities arise when the adoption of a
strategy is dynamic and can change during runtime. Which
factor defines the adoption of a certain strategy? How can
strategies be combined and work in synergy to achieve a new
complex self-organization goal? Can a system of agents that
initially begins with abstract strategy adoption collectively

converge to a specific strategy or to a subset of the initial
strategies? The answers to these questions in our future
work can provide new possibilities for the applicability of
adaptation strategies.

C. Applications

Different applications require different tree topologies
to increase their performance. Adaptation strategies have
different effects to the resulting trees. Therefore, instead of
classifying the relevance of self-organization methods for
trees to a range of distributed applications, classification
can be abstracted according to the relevance of adaptation
strategies.

The self-organization goal set in this paper is relevant to
various applications, for example, application-level multi-
casting [1]. Case-studies of the use of adaptation strategies
in such application domains can provide more insights
about the influence of a strategy in the actual application
performance.

VII. CONCLUSIONS

This paper proposes eight adaptation strategies that indi-
vidual autonomous agents deploy to maintain a dynamic tree
topology. A tree topology with different effects emerges for
each adaptation strategy that agents deploy. These effects are
evaluated based on four introduced metrics: connectedness,
connectivity, instability and robustness. Simulation with
1500 agents shows that the ‘top-down’ strategy performs
the best according to a defined self-organization goal and the
four performance metrics. Comparisons of the results show
specific performance trade-offs that can be made given the
requirements of a domain of application.

The concept of adaptation strategies motivates us to
further explore their applicability to other topologies, self-
organization goals and methodologies. Dynamic adoption of
strategies can provide new possibilities for self-organization.
Studying these issues based on case studies in various
application domains will provide new insights about the
applicability of adaptation strategies in self-managed dis-
tributed networks.
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