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Abstract

Global stabilization of energy networks without central-
ized control is the challenge this paper addresses. An
agent-based approach to decentralized self-management of
networked appliances is the solution this paper explores.
Software agents represent thermostatically controlled ap-
pliances (TCAs), generate energy plans for expected energy
consumption, and interact with each other as peers within a
tree based peer-to-peer overlay. The Energy Plan Overlay
Summation (EPOS) mechanism proposed, propagates plans
generated by individual TCA agents to aggregators within
this structure to achieve self-optimization/stabilization of
energy requests. Preliminary results in a small-scale and
restrictive environment are promising: a 15% increase in
energy stabilization is achieved.

1. Introduction

Power management in fully decentralized systems is a
challenge for distributed systems and autonomic comput-
ing [1]. As variance in power consumption can be costly,
research addresses fluctuations in demand over time [2], and
adapting production accordingly. This paper focuses on de-
creasing fluctuations in demand of networked thermostati-
cally controlled appliances (TCAs [8]), by aggregation of
expected energy requirements over time. Minimizing fluc-
tuations of energy consumption by such devices could have
a crucial effect on global energy production and consump-
tion as these devices are currently said to consume 25% of
the energy use in the U.S.A. [9].

Decentralized power management, however, requires in-
telligence within a networked system. Software agents are
the means chosen to provide this intelligence, as also cho-
sen by e.g. [3, 4, 5]. TCAs (refrigerators, air condition-
ers, water heaters, freezers) equipped with intelligent circuit

controllers [4] are represented by software agents. Each
individual software agent, representing an appliance, has
knowledge of its energy needs, of the potential requests to
be made over time by its environment. On the basis of this
knowledge and the environment in which it is situated each
agent devises its own energy plans.

As large-scale systems with centralized aggregators suf-
fer from extreme processing and communication cost and
scalability problems [10], decentralized aggregation of en-
ergy plans is the approach this paper proposes. Different
types of aggregation are explored: summation being the
simplest, more complex aggregation operations gather, co-
ordinate and selects the best plan for each agent on the basis
of more extensive knowledge. The best plan is the one that
maximizes and contributes best in the stabilization of global
energy consumption, given an agent’s knowledge.

To structure communication and aggregation a tree based
peer-to-peer overlay structure is assumed, in which agents
have the dual role of requester and aggregator'.

Aggregation over an overlay benefits from a minimum
communication cost as the hierarchy imposes one message
per node in every aggregation round, compared to other so-
lutions such as, for example, gossiping protocols [6, 7] that
exchange messages continuously over time.

The Energy Plan Overlay Summation (EPOS) mecha-
nism proposed, deploys the hierarchy in the network and the
individual intelligence of TCAs to aggregate plans, locally
selecting the best plan to satisfy the global goal of energy
stabilization over time.

2. Aggregation in EPOS

EPOS is a self-adaptation mechanism developed to ag-
gregate energy plans devised by TCA software agents, to
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minimize fluctuations in demand, acquiring stability, min-
imizing oscillations in a global energy network. Self-
optimization emerges through coordination of plans by
agents. This section outlines the functionality of EPOS:
self-adaptation by plan aggregation and selection and global
self-optimization by aggregation within a hierarchical over-
lay structure.

2.1. Aggregation Environment Overview

The EPOS aggregation environment is based on the
three following concepts: software agents that represent
the TCAs, energy plans that describe the possible options
for energy consumption over time, given the TCAs needs
and characteristics, and a peer-to-peer tree overlay with its
nodes being the aforementioned agents. Each agent gener-
ates a number of energy consumption plans for the expected
energy requirements for a given period of time. Such plans
are functions that contain power consumption values for a
number of discrete time intervals. Agents are organized in
a peer-to-peer based hierarchical tree overlay for communi-
cation, plan aggregation, matchmaking and selection. The
hierarchical structure itself is currently arbitrary. Agents
choose the most appropriate plan for their own TCA for a
following time period, given the knowledge they have of
their own options, as a requester, and aggregate their chil-
dren’s plans.

EPOS exploits the arbitrary tree based overlay structure
to coordinate plans. Each agent in a tree sends a set of its
own potential plans together with the old and new cumula-
tive plans that have been calculated so far to its parent. The
latter gathers these plans, pre-processes them by creating all
possible combinations of possible plans and adapts them in
a locally optimum plan. This allows the parent-aggregator
to choose the more stabilized plan. The new overall “global
plan” is calculated gradually during an aggregation round.
The procedure is recursive, starting from leaves up to the
root. In each step, the calculations are performed at the
level of the tree at which agents are aggregators and their
children requesters. The cumulative plans are updated and,
in the final step, the self-adaptive plans converge to a “new
globally optimum plan”. During aggregation, agents re-
tain some memory of the previous plans selected and of the
global energy consumption plan that is broadcasted back
to all the agents of the tree to initiate the next aggregation
round. This memory is referred to as overlay memory and
its role is outlined in the following sections.

In the remainder of this paper, a tree T is defined as a
list with each of its nodes being an agent n. Each agent
n has a list C' containing its children, with each element
representing a child agent c. In 7', a set of all of the potential
branches can be identified with every branch B defined by
itsroot b € T' and includes all the nodes from b to the leaves.

Each agent generates a set of possible plans P with each
element of the set containing a plan p. A plan p is a function
p[t] = e that gives the (constant) power consumption e in
the time interval ¢. Any reference of the form m; describes
the metric m with description i, concerning agent j.

2.2. Information Exchange

In each aggregation round, agents exchange information
in two directions over the aggregation tree. The bottom-
up exchange concerns the aggregation, and it starts from
the leaves up to the root. Top-down exchange concerns the
broadcast of the global aggregated energy plan estimated as
the summation of all of the selected plans of the agents in
the tree. This benefits the adaptation in the next rounds, as
explained in Section 2.4, and initiates the next aggregation
round without additional messages. In every step, the aggre-
gators return the selected plans to their children-requesters.
The aggregation is based on the following tuple:

ecn ecn ecn
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where the agent n receives the possible plans Py of its child
¢ € C" and the sum of the old and new selected plans,
sg‘fcn and sg‘fcn respectively, as they has been calculated
in the branch with c as root. This tuple is sent by the re-
quester to the aggregator (child to parent). The aggregator
must receive the tuple for each of its children before it starts

the plan pre-processing.
2.3. Plan Pre-Processing and Convergence

Pre-processing concerns the generation of candidate
plans from all the possible plans (P;) received from chil-
dren. The candidate plans are generated by performing par-
allel summation (summation of lists) over the values of all
the distinct plan combinations. In addition, the cumulative
summations of old and new plans, si, and si,, from all the
children are summed in order for the aggregation to con-
verge one level up in the tree.

The list with the candidate summation plans of all of the
combinations is expressed as S; and its size is given by (2).
The cost of the calculations depends on |C/|. The processing
cost per agent can be configured and controlled by adjusting
the number of (direct) children in the tree.

|Sel = T 171 2)

ceC

In every step, i.e., a level up in the tree, a cumulative sum-
mation of the old and new plans in the branches is per-
formed respectively. The procedure can be outlined as a



Table 1. Transitions in the convergence of plan aggregation
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recursive calculation starting from the leaves up to the root
of the tree. Table 1 illustrates the evolution of summations
over time during an aggregation round. The two long arrows
in the formulas denote the conceptual agent-to-branch-to-
tree transitions. The shorter arrows in each case show how
the transition is achieved. Initially, the branches contain the
leaves and their parents. The summation is performed on
the old and new selected plans, pS and pg respectively. Dur-
ing the agent-to-branch transition the branches grow, be-
coming higher, but the number of branches becomes lower
as the cumulative aggregation plans are summed. The child
agents in the first step are a subset of the agents contained in
the branches of the next aggregation steps (C™ C B™). The
operation can also be described and visualized as merging
of branches according to Fig. 1 (in the next section). At the
end of the aggregation round, the procedure converges with
only one branch representing the whole tree. The final sum-
mation in the aggregation cycle represents the global sum of
plans running. This is the branch-to-tree transition and the
arrow reflects the convergence of the branches to the tree T’
(B™C1).

The summations in the old and new plans are not equiva-
lent. The node n acts as an aggregator and not as a requester
in this aggregation step, thus the new cumulative aggrega-
tion plan of the branch s{}, does not contain the selected plan
py of agent n.

2.4. Adaptive Global Aggregation Plan Op-
erator

Considering the aforementioned actions, agents retain
the following information: The global old plan sg, of the
previous aggregation round, the new (sp,) and old (sp,) cu-
mulative summation plan of the branch and the candidate
summation plans S, of their children. This information is
the input of the Adaptive Global Aggregation Plan Oper-
ator (AGAPO). AGAPO forms the core of self-adaptation
towards global self-optimization from an agent viewpoint.
The operator adapts the candidate plans to the old global
aggregated plan and to the cumulative summation plans in
the branch. The overlay memory (sgo — Spo) provides some
knowledge about the plans of the upper agents in the tree
from which there is no new knowledge. The new knowl-
edge (spn + Sc) is a subset of the new global plan formed at

the end of the running aggregation. The calculation of the
AGAPO plan is given below:

Sagapo —  Sgo — Sbo + Son + Sc (3)
memory(T\B) new(B)

The AGAPO plans are calculated for every candidate plan
(| Sagapo| = |Sc|) and the list of these new plans are those that
are examined for their stabilization and oscillations. Fig. 1
illustrates the convergence and adaptation of the cumula-
tive plans. The changes in branches and aggregation points
are depicted together with the effect and contribution of the
overlay memory in every step of an aggregation round. The
example in Fig. 1 shows 5 consecutive steps during one ag-
gregation round.

TCA Agents

Aggregation Points

Branch-Cumulative Old
Summation

Branch-Cumulative New *
Summation

Figure 1. Convergence and self-adaptation
of plans based on the old and new branch-
cumulative summations

At the start of the aggregation, adaptation is mainly
based on memory. As the branches grow, the effect of mem-



ory decreases whereas the contribution of the new cumula-
tive plans increases.

Selecting the next plan by first adapting the candidates
in a global consumption plan optimizes the system from a
global perspective. The decisions reflect the whole network.
Furthermore, the choice of using the overlay memory when
there is no new knowledge seems valid. The respective gen-
erated plans between different aggregation rounds can be
similar or correlated to a high degree because of the knowl-
edge about the customers’ behavior and the type of TCA.
This fact argues for the use of memory at the beginning of
the aggregation procedure.

2.5. Matchmaking and Plan Selection

Two methods are used to evaluate stabilization and os-
cillation minimization: area-based and standard deviation-
based.

In the area-based method, the sum of the absolute dif-
ferences between all power values and the average power
consumption of the plan is calculated. The calculation is as
follows:

a = Z |=§agapo - Sagapo [t” (4)

te Sagapo

In the case of standard deviation, the value for every
AGAPO plan is calculated according to the following for-
mula:

1
sd = \/|S|—1 Z (Sagapot] — Fagapo)” ©)
agapo t € Sagapo

The above values are estimated for all the AGAPO plans
and the minimum one represents the more stabilized plan.
From this best plan, the parent agent can extract the can-
didate plan and the final selected plans for each of its chil-
dren. A first indication and comparison of the effectiveness
of these two similar methods is discussed in Section 3 be-
low.

3. Preliminary Results

The purpose of the following small-scale and restrictive
experiments is to give a first indication of a potential im-
provement in the stabilization of the global power consump-
tion. Such a preliminary step is crucial for determining the
further direction in studying the effectiveness of EPOS. The
measurements do not represent any real environment, but
only some initial findings of the tendencies in the behavior
of EPOS. In addition, the stabilization metrics are not only
part of the evaluation but also part of the algorithm as the
plan selection is based on them. For this reason, the global

stabilization and the plan selection are examined with re-
spect to both the standard deviation-based and area-based
methods.

3.1. The Experimental Environment

In the following experiments, the aggregation tree is bi-
nary and consists of 7 agents (3 levels). Each agent gen-
erates two new equivalent random plans in every aggrega-
tion round. These plans are considered normalized in [0, 1].
They are generated by setting a random seed/average value
in [0, 1] and getting the plan values with a 0.2 variation
from the seed but without extending the [0, 1] range. Every
plan contains 10 energy values. EPOS runs for 10 rounds,
without any memory in the first one. In the remaining 9
rounds, the algorithm is based on the memory of the previ-
ous round.

In the following subsections, the results of the stan-
dard deviation-based and area-based plan selection are il-
lustrated. In each case, both the standard deviation and the
area of the global energy plans at the end of every aggrega-
tion round are estimated for stronger validation of the final
results. EPOS is compared with random selection of plans.
In the following graphs, the linear trend-lines have been
added for easier comparisons. However they neither rep-
resent nor predict the behavior of system for more rounds
as the relationships are not linear. Their usage aims only for
the comparisons of the existing values with the lower values
denoting higher stabilization. Finally, the statistical signif-
icance of the results has been investigated by applying the
one-tail t-test in each case.

3.2. Standard Deviation-Based Plan Selec-
tion

Fig. 2a and 2b illustrate EPOS and random plan selec-
tion by selecting plans based on standard deviation. The
values in the graphs refer to the standard deviation and area
of global plans respectively at the end of every aggregation
round.

The average value of standard deviation in the random
case is 0.26 whereas in EPOS the same value is 0.22.
The stabilization in this case increases 15% (t=1.20, df=18,
p>0.13). In a similar manner, the average area value in ran-
dom selection is 1.99 and in EPOS 1.73. In this case, the
stabilization by calculating the area increases 13% (t=1.04
df=18, p>0.16).

In both of the above cases, there is a deterioration in the
stabilization of plans in rounds 3, 7 and 8. By examining the
plan selections, the different selected plans in EPOS con-
cern the leaves of the tree. In this point of the aggregation,
the adaptation is mainly based on the memory. This deteri-
oration scenario can potentially appear, especially in such a
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Figure 2. Random plan selection vs. EPOS: (a) standard deviation in the standard deviation-based
plan selection. (b) area in the standard deviation-based plan selection. (c) standard deviation in the
area-based plan selection. (d) area in the area-based plan selection.

small network with no enough aggregation steps for adapta-
tion during an aggregation round. The randomness and the
simple memory utilization of the previous round affect the
results of the aggregation in a higher degree in these small-
scale experiments.

3.3. Area-Based Plan Selection

Fig. 2c and 2d depict the standard deviation and area
measurements respectively for EPOS and random selection
in the case of area-based plan selection.

In this case, the average value of the standard deviation
in EPOS is 0.24 compared to 0.26 of the random plan se-
lection. The improvement in stabilization is 8% (t=0.64,
df=18, p>0.27). By calculating the area, the values are
1.99 and 1.77 for EPOS and random selection respectively.
This indicates 11% improvement (t=1.06, df=18, p>0.15).
The higher values in EPOS in the rounds 3, 4 and 6 ap-
pear for the same reasons as explained in Section 3.2. The
leaf agents select different plans based solely on memory.
Moreover, the small-size network imposes a small-scale
self-adaptivity.

Finally, from the two methods of plan selection, the stan-
dard deviation-based appear to be slightly better (2%-7%)
with both the standard deviation and area calculation to con-
firm this indication.

4. Conclusions

This paper discusses the EPOS mechanism for decentral-
ized energy plan aggregation designed to stabilize global
energy consumption. Aggregation is a complex function
based on gathering, matchmaking, selecting and finally
coordinating energy plans devised by agents representing
TCAs, organized as peers in a peer-to-peer tree overlay.
This paper describes how through the characteristic of self-
adaptation in the selection of plans, the system gains the
self-optimization characteristic, both properties of auto-
nomic computing. For self-adaptation, EPOS combines the
effects of convergence in the cumulative plans over the tree
overlay and the memory of previous plans.

In the results presented, the focus was on 2 issues: The
potential improvement in stabilization of global energy con-
sumption and in the comparison of the area-based and stan-



dard deviation-based plan selection methods. In the small-
scale experimentation environment, the maximum improve-
ment was 15% with the standard deviation-based method
providing the best results.

The EPOS functionality and behavior must be further
clarified and investigated. The next research steps include
the following:

e Further formalization of the plans and their correspon-
dence to real data

e Investigation of potential plan semantics generated by
certain devices

e Development of a more sophisticated overlay memory
utilization in the EPOS aggregation

The above should be tested in larger-scale simulation
environments and in real agent systems. At this mo-
ment, an implementation of a peer-to-peer tree overlay in
AgentScape [11] is in progress. AgentScape is an advanced
software agent platform on which agent can be modeled
similarly to the agents of TCAs. Experimentation on this
platform will reveal more insights in this approach.
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