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Abstract Energy demand-side management becomes a well-established ap-
proach in the Smart Power Grid. Aggregation of consumption information is a
critical operation performed by most demand-side energy management mech-
anisms as it provides information about the required adjustment of power
demand. However, a centralized demand-side energy management approach
controlled exclusively by utility companies is not always scalable, robust and
aligned to the privacy requirements of consumers. A large amount of end-user
consumption information is aggregated continuously in centralized approaches.
This paper introduces an alternative demand-side energy management scheme:
ALMA, the Adaptive Load Management by Aggregation. In ALMA, consumers
adjust their demand by selecting between different incentivized demand-options
based on aggregate consumption information provided by peer-to-peer aggre-
gation mechanisms. The feasibility of dynamic adjustment in power demand is
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evaluated and confirmed analytically using data from the current reality and
practice of Smart Power Grids.

Keywords demand-side · energy management · demand adjustment ·
aggregation · Smart Power Grid

1 Introduction

The increasing scale and decentralization of the Smart Power Grid results in an
information gap: Consumers do not have collective and summarized informa-
tion about the availability and consumption of energy resources in the system.
Global system objectives need to be met such as matching supply/demand,
the minimization of power peaks and the maximization in the use of renew-
able energy resources [Brandstätt et al, 2011]. Traditionally, these objectives
have been managed from the production-side. This approach is often not cost-
effective as it involves expensive and time-consuming actions that are handled
by system operators. Such actions include the activation of operating reserves,
the installation of new power plants and other infrastructure [Joskow and Ti-
role, 2007]. Demand-side energy management by adjusting energy consumption
based on aggregate information is an alternative approach. Decentralized peer-
to-peer aggregation of consumption information becomes the means to acquire
such collective and summarized information based on which adjustments can
be performed.

This paper studies the feasibility of dynamic adjustments in power demand
using peer-to-peer aggregation. More specifically, this paper introduces ALMA,
Adaptive Load Management by Aggregation. ALMA is a demand-side energy
management scheme in which consumers dynamically select between a number
of predefined demand options that represent comfort and economy levels of
their energy consumption. Their selections are made based on price or other
incentives provided by utilities. Peer-to-peer aggregation makes the aggregate
power demand locally available to consumers in order to trigger the required
adjustments of energy consumption.

ALMA relies on behavioral flexibility that consumers can offer based on in-
centives provided by their utilities. Consumers and more specifically software
agents control home devices and configure a level of comfort and economy in
the local energy consumption. Under extreme cases in which the Smart Power
Grid is stretched by high load, consumers sacrifice a degree of comfort on a
voluntary basis to obtain an economic or other revenue from their utilities.
Agents require awareness of the total energy consumption in the system to
adapt their local energy consumption accordingly. This awareness is achieved
via aggregation that consumers perform in a decentralized fashion and without
the involvement of utilities. ALMA is based on the peer-to-peer aggregation as
it allows multiple utilities and consumers to coexist in an aggregation over-
lay network and exchange information about the dynamically adaptive energy
consumption. The feasibility of ALMA is validated by analytical results com-
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puted using data from the an operational Smart Power Grid: the Olympic
Peninsula Smart Grid Demonstration Project [Hammerstrom, 2007].

This paper is outlined as follows: Section 2 discusses the concept of demand-
side energy management in the Smart Power Grid and illustrates the re-
search focus of this paper. Section 3 outlines and reviews peer-to-peer aggre-
gation mechanisms. Section 4 introduces the demand-side energy management
scheme studied in this paper: ALMA, Adaptive Load Management by Aggre-
gation. Section 5 illustrates the Olympic Peninsula Smart Grid Demonstration
Project. Data collected during this project are used in the validation approach
illustrated in Section 6. Section 7 illustrates the analytical results collected us-
ing this data and Section 8 interprets the findings of this analysis. Section 10
discusses and outlines future work in ALMA. Finally, Section 11 concludes this
paper.

2 Decentralized Demand-side Energy Management

Demand-side energy management usually concerns (i) load-shifting of energy
consumption at different time points and/or (ii) load-adjustment by increas-
ing or decreasing overall energy consumption [Stadler et al, 2009, Strengers,
2008, Ashok, 2006]. Although demand-side energy management is not a re-
cently introduced idea [Schweppe et al, 1989], nowadays it becomes a critical
operation of the Smart Power Grid because of the broad adoption of micro-
generation using renewable energy resources and enabling control technologies
in households such as smart sensors.

Demand-side energy management is orchestrated in practice by power util-
ity companies via demand-response programs. An outline and review of exist-
ing demand-response programs is illustrated by Albadi and El-Saadany [2008]
and Cappers et al [2010]. These programs include the installation of smart
sensors, controllers and thermostats at the households of consumers to extract
almost real-time information about the energy consumption. In theory, these
devices provide two levels of control: (i) local control by the consumer and (ii)
global control by the utility. Local control concerns changes of consumption
behavior via some awareness about the energy consumption and the price the
consumer pays. Furthermore, local control provides interfaces to certain house-
holds devices, such as heating, ventilation and cooling (HVAC) systems, for
the configuration of their operation. In contrast, global (centralized) control
may be directly applied by the utility companies via, for example, frequency
signals to which household devices respond [Stadler et al, 2009] or indirectly
via price incentives in order consumers to change their consumption behav-
ior [Hammerstrom et al, 2010].

Local control cannot always address system objectives, such as minimiza-
tion of unexpected power peaks, as consumers are unaware of system infor-
mation. In contrast, global control requires continuous aggregation of all lo-
cal information in a centralized management entity belonging to the utility
companies. This approach raises scalability, fault-tolerance and privacy issues.
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Utilities have to process information from millions of consumers and their de-
vices in almost real-time. This increases the costs of utilities that have to make
investments to expensive storage, computation and communication facilities,
e.g., data centers. Furthermore, centralization results in single points of fail-
ure that can be prevented by additional investments in computer facilities
for redundancy. Finally, data centralization and management by utility com-
panies raises several privacy issues. Such detailed energy consumption data
can be used to extract information about the lifestyle and activities of con-
sumers as discussed by Lisovich et al [2010] and AlAbdulkarim and Lukszo
[2010]. Therefore, an important question is if detailed consumers’ data should
be stored and managed at the supply-side. Note that the actual interest of
the utilities is mainly in the aggregated energy consumption for the purpose
of demand-side energy management and not a detailed real-time information
about local consumption of individual consumers.

A demand-side energy management system is decentralized if it enables
consumers to play an active role in the Smart Power Grid by interacting with
each other in a peer-to-peer fashion to control their aggregate energy consump-
tion and production. Minimum interventions are introduced from supply-side.
Utility companies do not have anymore detailed energy consumption data but
only aggregated data. However, utility companies are able to feed consumers
with the aforementioned system objectives via high-level policies, incentives,
and pricing schemes.

A demand-side energy management system is autonomous if it introduces
a minimum involvement, participation and interaction of human consumer ac-
tors in demand-response programs of an energy management system. Software
agent technologies [Scerri et al, 2002, Kok et al, 2005, Kailas et al, 2012] in-
stalled in sources of household consumption and production are the technical
means to make autonomous control possible.

Decentralization and automation transform the problem of demand-side
energy management to a large-scale agent-based coordination problem. Agents
representing consumers and controlling their consumption devices may interact
with each other in a peer-to-peer fashion and without centralized mediation to
collectively coordinate their energy consumption and meet certain objectives
of the electrical power grid. For example the minimization of power peaks,
referred to as ‘peak shaving’, the matching of consumption patterns to the
availability of renewable resources, or the shifting of energy consumption at
different time points are problems that can be modeled using agent-based
coordination.

A decentralized aggregation of information about demand is a viable ap-
proach to make such demand adjustments possible as consumers can make
local selections that have a global impact in aggregate demand. The remain-
der of this paper illustrates existing peer-to-peer aggregation techniques that
can be used by agents controlling households devices of consumers to aggre-
gate demand information. Furthermore, an analytical study is illustrated about
the feasibility of dynamic adjustments in power demand. This analytical study
is grounded to the current reality and practice of the Smart Power Grid. It
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provides conclusions about the potential of adjusting aggregate demand in
case consumers perform different local demand selections based on informa-
tion made available by peer-to-peer aggregation mechanisms.

3 Peer-to-peer Aggregation

Peer-to-peer aggregation is a decentralized dissemination, routing, collection
and computation of information in large-scale networks. Peer-to-peer inter-
actions between autonomous agents is the main principle behind peer-to-peer
aggregation. The purpose of peer-to-peer aggregation is to provide summarized
information about the network to each individual node without employing a
centralized computational entity or authority. Information summarization is
usually performed by computing aggregation functions, e.g., summation, av-
erage, maximum, count and standard deviation. In other words, given
the numerical values S = {s1, ..., sn} distributed in n nodes of a network,
aggregation is defined as the computation of f(S) in (i) every node in the
network (ii) or individual nodes that perform aggregation queries.

These numerical values are related to the application that uses aggrega-
tion and may correspond to the bandwidth of the node in application-level
multicasting [Tan et al, 2005] or the power demand in demand-side energy
management studied in this paper.

This section classifies peer-to-peer aggregation methodologies in three types:
(i) gossip-based aggregation, (ii) aggregation based on efficient information
storage and (iii) tree-based aggregation. Note that aggregation mechanisms
usually combine principles and concepts from each of these types as shown in
the rest of this section.

Gossip-based aggregation is an actual peer-to-peer information routing
mechanism that disseminates information in a network in an epidemic fashion.
For example, Jelasity et al [2005] introduces an aggregation framework for the
computation of the average aggregation function. Nodes periodically gossip
their numerical values in a pairwise fashion over a dynamic unstructured over-
lay network. After each exchange, the average is computed that becomes the
new exchanging value in the next gossip performed. This process repeats for
all nodes and results in an incremental variance reduction of the distributed
values that converge to average. Count can be also computed by applying
the ‘inverse birthday paradox’ [Massoulié et al, 2006]. Then computation of
summation is possible as the product of count and average.

Several other methodologies aim to efficiently store the distributed values
or a sample of them locally in every node of the network. Usually information
is stored in a compressed form using probabilistic data structures. Then, com-
putation of several aggregation functions is locally possible. The distributed
values are usually exchanged using gossiping or other routing mechanisms.
In this class of aggregation methodologies belongs various synopsis diffusion
mechanisms [Haridasan and van Renesse, 2008, Kempe et al, 2003, Kashyap
et al, 2006, Nath et al, 2008, Nabeel Ahmed, David Hadaller, 2006] that employ
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several data structures [Aggarwal and Yu, 2007] to efficiently store informa-
tion.

Finally, tree-based aggregation [Fei et al, 2001, Ogston and Jarvis, 2010]
benefits from the graph property of path uniqueness. Information is aggre-
gated in a bottom-up fashion and aggregation results are broadcasted in a
top-down fashion. In this way, counting a value twice is prevented and infor-
mation is routed efficiently. Nevertheless, tree topologies require maintenance
as they are sensitive to single node failures. A removal of a node close to
the root disconnects the topology and the routing information paths for ag-
gregation are disrupted. Continuous topology building and maintenance are
required. Overlay networks self-organized in tree topologies are introduced in
related work [Fei and Yang, 2007, Yang and Fei, 2007, Frey and Murphy, 2008,
Pournaras et al, 2010] to capture the problem of fault-tolerance.

Table 1 summarizes the aggregation mechanisms discussed in this section.

Table 1: An overview of peer-to-peer aggregation mechanisms.

System
Aggregation

Function
Aggregation

Values
Routing Re-
quirements

Storage Re-
quirements

Nabeel Ahmed,
David Hadaller

[2006]

summation,
count,

average1,
standard
deviation2

dynamic

flooding,
gossiping or

random
walks

counting
sketches [Fla-

jolet and
Nigel Martin,

1985]

Haridasan and
van Renesse

[2008]

distribution
of

aggregation
values

static gossiping
synopsis
diffusion

Jelasity et al
[2005]

average,
count3,

summation1

static, recom-
putations

gossiping
hash maps
for count

Kashyap et al
[2006]

algorithm
variations for
minimum,
maximum,
summation,
average,
rank

static
group

formation
and gossiping

synopsis
diffusion

Kempe et al
[2003]

algorithm
variations for
summation,
average and

quantiles

static gossiping
synopsis
diffusion

Nath et al
[2008]

summation,
count

static
ring/tree

topologies,
flooding

synopsis
diffusion

Ogston and
Jarvis [2010]

summation4

queries
dynamic tree topology

parent and
children

1 It is derived by the average and count aggregates.
2 It is derived by the summation and its squares.
3 It is computed using the ‘inverse birthday paradox’ [Massoulié et al, 2006].
4 Others aggregates could be potentially computed.
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The choice of a peer-to-peer mechanism may be subject to one or more of
the following aspects:

– Aggregation functions: Current practice in peer-to-peer aggregation
shows that aggregation mechanisms are usually designed to compute spe-
cific aggregation functions. More generic computational capabilities are
challenging to introduce as aggregation functions have different mathe-
matical properties [Calvo et al, 2002] and therefore, their computational
requirements may vary significantly. A single peer-to-peer routing mecha-
nism cannot easily meet computational requirements of different aggrega-
tion functions. For example, there is no straightforward way to compute
summation in gossip-based aggregation [Jelasity et al, 2005]. Duplicate-
sensitive aggregation functions (summation) are harder to compute in
unstructured overlay networks than duplicate-insensitive (maximum) ag-
gregation functions.

– Inaccuracies: The computation of aggregation functions may be prone to
various inaccuracies. Aggregation inaccuracy is defined in this paper as the
deviation of the computed aggregates from their actual values. Aggrega-
tion inaccuracies originate from duplicate values, outdated values (values
that have changed) or values that are not counted at all. Loss of infor-
mation, failures in nodes and performance trade-offs to make aggregation
cost-effective are some sources of inaccuracies [Kennedy et al, 2009]. In
gossip-based aggregation, inaccuracies originated from outdated values are
captured by recomputations. Inaccuracies in aggregation based on efficient
information storage concern duplicate values that can be detected using
probabilistic data structures such as sketches [Aggarwal and Yu, 2007] or
bloom filters [Brodera and Mitzenmacher, 2004, Bloom, 1970]. Tree topolo-
gies need to handle inaccuracies related to node failures that disrupt the
aggregation paths. Therefore, a self-organized and robust tree topology
provides more accurate aggregation at the cost of higher communication
and computational overhead originated by the self-organization process.

– Dynamic information: Peer-to-peer aggregation is challenging to per-
form if the distributed values received as an input in aggregation functions
change over time. Adaptation of aggregates to capture these changes re-
quires recomputations that come with extra communication and compu-
tational cost [Jelasity et al, 2005]. Alternatively and in case the changes
are frequent and introduce a prohibitive adaptation cost, approximation
techniques can be employed to estimate a distribution of aggregates over
time [Nabeel Ahmed, David Hadaller, 2006, Haridasan and van Renesse,
2008].

– Performance: The design of a peer-to-peer aggregation mechanism in-
fluences the communication, computational and storage cost. Most aggre-
gation mechanisms introduce performance trade-offs. For example, if the
distributed numerical values changes frequently, nodes need to exchange
updates and therefore additional communication is required to guarantee
a high level of accuracy in the computed aggregates [Nabeel Ahmed, David
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Hadaller, 2006, Haridasan and van Renesse, 2008]. Similarly, if various ag-
gregations functions are required for computation, a tree topology can be
used at a cost of maintenance required to guarantee that nodes remain
connected [Fei et al, 2001, Ogston and Jarvis, 2010].

Peer-to-peer aggregation provides the means to information access in large-
scale decentralized networks and their applications. The rest of this paper
shows how peer-to-peer aggregation can be used as a building block for a
decentralized demand-side energy management in the Smart Power Grid.

4 Adaptive Load Management by Aggregation

Consumers need to adapt their consumption behavior and reduce or even in-
crease their energy consumption as a response to (i) failures in the power
supply or (ii) micro-generation that exceeds current demand. In these cases,
one option is that consumers need to sacrifice either a level of comfort or econ-
omy for a period of time as a contribution to meet the available power supply
and prevent system blackouts. The adjustments required concern not only the
reduction of energy consumption but also the increase that is needed to meet
the varying availability of renewable energy resources. Note that Paulus and
Borggrefe [2011] estimate an accumulation of positive and negative balancing
power of 33% and 41% in demand by 2030 in Germany, due to the integration
of wind generation.

The problem of controlling the actual energy consumption of consumers us-
ing peer-to-peer aggregation is challenging and is influenced by various socio-
technical and economic factors. The scope of this section focuses on the fol-
lowing three aspects:

1. Potential incentives of consumers to influence their energy consumption by
sacrificing a level of comfort or economy.

2. Peer-to-peer aggregation as the means for a level of reduction or increase
in energy consumption.

3. Feasibility of the first two aspects in an operational Smart Power Grid.

Households consumers can manage in real-time their comfort and economy
related to their energy consumption by installing home automation technolo-
gies such as the ones reviewed by Kailas et al [2012]. Some load management
examples include the following:

– Adjustment of temperature setpoints in thermostatically controlled de-
vices [Lu et al, 2005], e.g., water heaters, refrigerators or HVAC systems.

– Turning on/off consumption sources [Clement-Nyns et al, 2010], e.g., the
charging of electrical vehicles.

– Adjustment of dimmers that control consumption sources such as light-
ing [Alahmad et al, 2011].

– Hibernating monitors and personal computers [Ponciano and Brasileiro,
2010].
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Note that, demand-side energy management can also be applied in various
domains of industrial consumers as illustrated by Paulus and Borggrefe [2011],
Ashok [2006] and Middelberg et al [2009].

Consumers require incentives to accept the idea that automation tech-
nologies control their energy consumption [Strbac, 2008, Faruqui and George,
2005, Hopper et al, 2006]. Environmental concerns are not always adequate to
guarantee a high level of participation and engagement [Hammerstrom, 2007,
Sundramoorthy et al, 2011]. Incentives should be provided mainly by utilities
via demand/response programs [Albadi and El-Saadany, 2008, Cappers et al,
2010]. However, energy policies may enforce a minimum level of engagement
such as the policies of the UK government that require that all British house-
holds are equipped with smart meters by 2020 [Sundramoorthy et al, 2011].
An incentive may concern a benefit of lower pricing or other economic revenue
offered as a result of allowing a sacrifice of a comfort or economy level for a
predefined period of time that is negotiated between the consumers and their
utilities. A number of existing contract and pricing schemes are illustrated
by Palensky and Dietrich [2011].

Consumer participation should be on a voluntary basis, meaning that the
comfort of consumers is a non-negotiable right [Strengers, 2008]. In practice,
consumers may have the option to overwrite the adjustments performed by
the automated technologies. The concept of adjustable autonomy [Scerri et al,
2002] is highly applicable in this domain and such an option has been an
adopted practice by both consumers and utility companies in the Olympic
Peninsula Smart Grid Demonstration Project [Hammerstrom, 2007] and the
statewide pricing pilot experiment of California [Faruqui and George, 2005].
Similarly, the Dehems5 system is a pilot project that tests and evaluates the
user participation and engagement in realistic innovation platforms referred
to as ‘living labs’. These platforms bring together and involve end-users, re-
searchers, industrialists and policy makers to examine a wide range of in-
fluencing factors such as (i) policies, (ii) behavioral context, and (iii) design
concerns for the persuasive feedback and home technologies [Richardson, 2008,
Sundramoorthy et al, 2011].

Consumers require information and awareness about the current energy
consumption and available supply capacity to adapt their energy consumption.
Aggregation can provide this information and awareness and, therefore, it is
a crucial and core operation required by load management mechanisms. This
section introduces a decentralized demand-side management scheme based on
peer-to-peer aggregation: ALMA, Adaptive Load Management by Aggregation.
The concept of ALMA is the following: On the one hand, utilities disseminate
the available supply capacity to consumers without the need to aggregate their
individual energy demand in a centralized fashion. On the other hand, software
agents installed in household devices of consumers disseminate and collect
information in a peer-to-peer fashion about their current demand. Based on

5 Accessible at: http://www.dehems.eu/ (last accessed: May 2012)
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the aggregate demand in the network, agents adapt their local demand to meet
the available supply capacity.

Figure 1 illustrates an overview of ALMA. Adaptation of local demand is
performed based on the dynamic selection between a number of predefined de-
mand options. The options actually represent incremental levels of comfort and
economy that the user may experience when a certain possible state (demand)
is selected. However, note that all demand options are technically possible
and approved by consumers. Decision-making expresses their preference level
between comfort and economy and selections can be performed (i) manually
by the consumers themselves via a user interface or (ii) by an agent strategy
that consumers approve and reconfigure. For example, consumers have the
option to configure their agents to select demand options that correspond to
80% comfort during the day. Moreover, a consumer may desire an economi-
cal consumption that should not exceed a certain number of hours during a
day. The definition of demand options and the actual decision-making scheme
between these options should be incentivized and negotiated by utilities with
consumers via a demand/response program.

Fig. 1: Demand-side energy management using ALMA. Consumers select between different
demand options representing levels of comfort and economy in their energy consumption.
The selections are based on the aggregate demand and capacity in the Smart Power Grid.
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This paper evaluates the feasibility of ALMA in the current reality and
practice of Smart Power Grids. More specifically, this section follows an ana-
lytical approach to validate the following hypothesis:

Hypothesis Adjustments of aggregate energy consumption can be achieved
with demand options of local energy consumption, representing a wide range of
comfort and economy levels, that can be pre-defined and dynamically selected
by incentivized consumers.

This hypothesis is validated within the context of a well studied and state
of the art demonstration project that involves real customers, utilities and
other stakeholders under realistic settings that shape and underpin the fu-
ture Smart Power Grids: The Olympic Peninsula Smart Grid Demonstration
Project [Hammerstrom, 2007]. The next section provides an overview of this
project and the validation approach followed. The analytical results computed
using the actual data of the Olympic Peninsula project confirm the above
hypothesis.

5 The Olympic Peninsula Smart Grid Demonstration Project

The Olympic Peninsula Project, illustrated in the report of Hammerstrom
[2007], is a Smart Power Grid demonstration project funded by the U.S. De-
partment of Energy and led by the Pacific Northwest National Laboratory
(PNNL). A wide range of stakeholders6 are involved such as regional utility
companies, balancing authorities etc. Within this project, consumers play an
active role in managing the Smart Power Grid by adjusting their individual
energy use based on price signals. These signals are exchanged between con-
sumers and utility companies, forming a two-way bidding market. Interactions
are supported by novel communication technologies such as the Internet-Scale
Control System (iCS) [Ambrosio et al, 2011]. The advantages of the approach
followed is (i) improvement of reliability in the Smart Power Grid, (ii) re-
ductions of consumers’ bills, (iii) minimization of the future infrastructure
investments and (iv) higher integration of renewable energy resources. The
results collected in the period between March 2006 and March 2007 show
that a 15% peak reduction can be achieved during a year and consumers can
lower their energy bills by 10%. Furthermore, $70 billions can be saved in a
20 year period by avoiding infrastructure changes in generation, transmission
and distribution systems that are required to meet the increasing demand.

Three types of controllable assets are involved in the project: (i) Two
backup diesel generators, (ii) five water-pumping stations and (iii) 112 house-
holds. For illustration purposes, this section focuses on the controllable assets

6 Some of the stakeholders involved are the Bonneville Power Administration, PacifiCorp,
Portland General Electric, the City of Port Angeles and Clallam County Public Utility
District #1. Industrial collaborators include Invensys Controls, Whirlpool Corporation and
IBM Thomas J. Watson Research Center.
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of households. Engineering details about the control of generators and water-
pumping stations are provided in the project report [Hammerstrom, 2007].
Despite the fact that the households are regionally distributed and connected
to different feeders7, the project positions consumers within a single virtual
feeder under the control of a dashboard software platform managed by grid op-
erators. The capacity of this virtual feeder is varied at different periods during
the project year to evaluate the consumer behavior under different capacity
constraints.

Three types of contracts are assigned to consumers: (i) fixed, (ii) time
of use and (iii) real time pricing. The fixed contract does not involve
changes in the electricity prices regardless of the amount and times of con-
sumption. This group is the most inflexible to react to price incentives. The
time of use contract involves three electricity price schemes, the ‘off-peak’,
‘on-peak’ and ‘critical peak’. The price of electricity increases for each scheme
respectively. This group has the option to configure home automation software
to match certain comfort and economy settings in each price scheme. Finally,
the real time pricing contract varies the electricity price every five minutes.
This contract type is the most flexible as it provides to consumers the option to
continuously adjust their level of comfort and economy and, therefore, achieve
the highest bill savings. Finally, there is a fourth group of consumers, the con-
trol group that is used for the evaluation of the demand/response program.
Consumption information is collected from this group as well, however, the
difference is that consumers do not have any contract within the context of
the project.

Load-control modules are installed in HVAC systems, water heaters and
cloth dryers of consumers. These modules communicate wirelessly with a home
gateway from which communication with a centralized PNNL shadow market
is performed every five minutes. This communication is two-way and concerns
a bidding price and a clearing price for this period of five minutes. The bidding
price represents the current demand based on history information about the
clearing prices and the preference of consumer about the level of comfort and
economy. The clearing price for a certain five-minutes period of time is the
marginal8 price at which the aggregate load curve and demand curve intersect.
The exact computation of both bidding and clearing prices is out of the scope
of this paper and is illustrated in detail by Hammerstrom [2007].

Consumers adjust their power demand by making selections about (i) the
occupancy mode and (ii) the heating/cooling mode. These modes are referred
to in this this paper as consumption modes. An occupancy mode represents
a temperature configuration related with a certain state of a consumer, e.g.,
away, sleep etc. Eight possible occupancy modes can be pre-programmed by
consumers. Technically, an occupancy mode is configured by a temperature

7 Feeders are circuits of the distribution system that connect substations with end-
consumers. They run along streets or underground and power the distribution transformers
at or near the consumer premises.

8 In the context of the Olympic Peninsula Project, the marginal price is the change in the
total price as a result of a unit change in demand.
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setpoint. However, consumers with a real time pricing contract addition-
ally select for each of their controllable devices a temperature range between
a number of pre-defined temperature ranges. Each range is defined by a max-
imum and minimum temperature in relation to the configured temperature
setpoint. Within this range, energy saving can be achieved. For examples,
consumers of HVAC systems with a real time pricing contract select be-
tween five temperature ranges that represent incremental levels of comfort and
economy as illustrated in Table 3.4 of the project report [Hammerstrom, 2007].
Note that the actual temperature ranges are system parameters and cannot
be modified by consumers. Finally, the heating/cooling mode concerns the se-
lection between three operational modes of HVAC systems: heating, cooling
and automatic. Note that each occupancy mode concerns temperature config-
urations for both heating and cooling.

6 Validation Approach

Validation of the hypothesis set in Section 5 is based on analysis of power de-
mand from the Olympic Peninsula Smart Grid Demonstration Project [Ham-
merstrom, 2007]. The project data9 used concern the demand bids of the
households consumers made every five minutes during the project year. For
illustration purposes, assume a function f(t, j, i, o) that computes the power
demand using the project data. f(t, j, i, o) is computed based on the following
information:

– t ∈ [1, 288]: The five minutes period of a project day during which a bid
is sent. The total number of bids during a day is 288 = 60 minutes ∗ 24
hours / 5 minutes.

– j ∈ [1, 365]: The project day in which the bid t is sent. The total number
of projects days are 365.

– i ∈ [1, 112]: The consumer who sends the bid t. The total number of resi-
dential consumers is 112.

– o ∈


[0, 7] for occupancy modes

[0, 2] for heating/cooling modes

[0, 23] for their combination



The consumption mode
selected when the bid t
is sent. The selection is
made from the 8 occu-
pancy modes, the 3 heat-
ing/cooling modes or their
8 ∗ 3 = 24 combinations.

The goal of validation is to show if the power demand aggregated from the
total consumers is influenced by alternative selections of consumption modes.
An adjustment of the aggregated power demand may come as a result of select-
ing different consumption modes compared to the actual selections. Techni-
cally, aggregation of information about power demand and actual selections of

9 Available at: https://svn.pnl.gov/olypen (last accessed: May 2012)
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consumption modes can be performed by one of the peer-to-peer aggregation
mechanisms discussed in Section 3. Maximum and minimum adjusted power
demand are computed by analyzing the average level of power demand for each
selected consumption mode. The analysis performed concerns the computation
of the following information:

– Do
j : The cumulative power demand of the total consumers that select the

consumption mode o during the day j of the project.
– No

j : The number of samples (bids sent every five minutes) based on which
the cumulative power demand Do

j is computed.
– Nj : The total number of samples (bids sent every five minutes) for the

total consumers during the day j of the project.

Nj counts the bids regardless of the selected consumption mode. The cu-
mulative power demand Do

j during a day j of the project with the consumption
mode o selected is computed as follows:

Do
j =

112∑
i=1

288∑
t=1

f(t, j, i, o) (1)

Bids with zero power demand are excluded from the data analysis as they
bias the computed results. These bids are treated as if they contain no in-
formation. Based on Do

j , No
j and Nj , the adjusted cumulative power demand

D̂o
j , when consumption mode o is selected during the day j of the project, is

computed as follows:

D̂o
j =

Do
j

No
j

Nj (2)

Based on the above, the minimum and maximum adjusted power demand
for a day j of the project is computed as follows:

D̂min
j =

x
min
o=0

D̂o
j (3)

D̂max
j =

x
max
o=0

D̂o
j (4)

For x =


7 for occupancy modes

2 for heating/cooling modes

23 for their combination

The goal of validation is to compare both minimum and maximum ad-
justed power demand D̂max

j , D̂min
j ∀j ∈ [1, 365] with the actual power demand

Dj of the raw data during the project year. This comparison indicates if the
actual power demand can be adjusted by making different selections of con-
sumption modes using a dynamic and decentralized peer-to-peer aggregation.
Confirmation of the hypothesis is based on this comparison.
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7 Analytical Results

Figure 2 compares the actual power demand Dj ∀j ∈ [1, 365] of the raw data

with the minimum D̂min
j and maximum D̂max

j power demand computed. When
adjustments are performed via selections of occupancy modes, the minimum
and maximum adjusted power demand computed on average during the project
year is 6362.5 KW and 23937.2 KW respectively when the actual power de-
mand is 11844.7 KW. In contrast, these adjustments are significantly lower in
heating/cooling modes. The minimum and maximum adjusted power demand
computed on average during the project year is 7131.6 KW and 12324.9 KW
respectively. Finally, the combined occupancy and heating/cooling modes pro-
vide the highest adjustments of power demand. The minimum and maximum
adjusted power demand computed on average during the project year is 4793.1
KW and 25048.0 KW respectively.

Fig. 2: The actual, minimum adjusted and maximum adjusted power demand during the
project year. The adjustments performed concern the selections of (a) occupancy modes,
(b) heating/cooling modes and (c) their combination.

One aspect investigated is the comparison of the consumption modes with
regards to the contribution in the adjustment of power demand. In the case
of occupancy modes ‘1’, ‘2’, the highest decrease of power demand by 1888.3
KW and 3236.6 KW on average per day respectively is observed. The selec-
tions of occupancy modes ‘4’ and ‘5’ have the highest increase of power de-
mand, 3999.0 KW and 6982.2 KW on average per day respectively. However,
note that no conclusions can be reached about the effect of certain occupancy
modes as their semantic is only known to consumers who define it by choos-
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ing their temperature configurations. In contrast to the occupancy modes, the
heating/cooling modes have a clearer impact on the adjustment of power de-
mand. The selection of cooling has the highest decrease of power demand that
reaches 3920.5 KW on average per day, whereas, the highest increase of power
demand is computed by the selections of heating modes with 195.2 KW on
average per day. The potential of a decrease in power demand using cooling
instead of heating is expected given the fact of extreme cold winter conditions
in the Olympic Peninsula [Hammerstrom, 2007]. Finally, the combination of
occupancy mode ‘1’ with cooling and occupancy mode ‘2’ with heating results
in the highest decrease of power demand by 3422.5 KW and 2658.5 KW on
average per day respectively. The highest increase of power demand is 6162.5
KW and 7314.5 KW on average per day respectively for the combination of
occupancy mode ‘4’ with heating and the occupancy mode ‘5’ with heating.

The influence of the contract type assigned to each consumer is investi-
gated as well. The actual, minimum adjusted and maximum adjusted power
demand of different consumers’ groups are aggregated respectively. Table 2
and Table 3 illustrate the minimum adjusted and maximum adjusted power
demand respectively, relative to the actual one. The results for each group of
consumers and consumption mode are shown.

Table 2: The minimum adjustments of power demand relative to the actual one based on
selections of occupancy modes, heating/cooling modes and their combination. The results
concern the control group and the consumers with fixed, time of use and real time
pricing contract.

Occupancy Modes Heating/Cooling Modes Combined
Control 47.3% 13.0% 51.9%
Fixed 61.1% 19.7% 63.2%
Time of use 50.2% 26.6% 62.7%
Real time pricing 33.6% 30.9% 48.4%

Table 3: The maximum adjustments of power demand relative to the actual one based on
selections of occupancy modes, heating/cooling modes and their combination. The results
concern the control group and the consumers with fixed, time of use and real time
pricing contract.

Occupancy Modes Heating/Cooling Modes Combined
Control 43.0% 7.6% 46.2%
Fixed 51.7% 16.7% 57.1%
Time of use 48.3% 17.1% 54.7%
Real time pricing 33.8% 10.4% 39.0%

For the occupancy modes, the consumers with the real time pricing
contract have the lowest minimum and maximum adjustments of power de-
mand of 33.6% and 33.8% respectively, relative to the actual power demand.
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The low adjustment potential of the real time pricing group compared to
the other groups of consumers is explained by the fact that this is the group
that achieves the highest adjustments of power demand within the Olympic
Peninsula Project [Hammerstrom, 2007]. The highest minimum and maximum
adjustments are 61.1% and 51.7% respectively, relative to the actual power de-
mand. These highest adjustments correspond to the consumers with a fixed
contract.

For the heating/cooling modes, the highest minimum adjustment of power
demand is 30.9% relative to the actual power demand for the consumers with
a real time pricing contract. The highest maximum adjustment of power
demand is 17.1% relative to the actual power demand for the consumers with
a time of use contract. Moreover, the lowest minimum and maximum adjust-
ment of power demand is 13.0% and 7.6% respectively, relative to the actual
power demand. These lowest adjustments correspond to the consumers of the
control group.

Note that, although the consumers with real time pricing contracts
have the lowest minimum adjustment of power demand based on selections of
occupancy modes, the opposite holds for selections of heating/cooling modes.
Consumers with real time pricing contracts have for each occupancy mode
two temperature ranges, one for heating and one for cooling. A switch from a
heating to a cooling mode is an actual utilization of an extended temperature
range that is larger than switching between different occupancy modes. These
switches are observed within the transition period autumn-winter during which
the total power demand gradually increases and consumers may select both
heating and cooling modes during the day.

Finally, the results concerning the combination of occupancy and heat-
ing/cooling modes are similar to the results of occupancy modes. The difference
is that the adjustments are higher. The consumers with real time pricing
contract have the lowest minimum and maximum adjustments of power de-
mand by 48.4% and 39.0% respectively, relative to the actual power demand.
The highest minimum and maximum adjustments are 63.2% and 57.1% re-
spectively, relative to the actual power demand. These highest adjustments
correspond to the consumers with a fixed contract.

8 Interpretation of Results

The analytical results computed using data from the Olympic Peninsula Smart
Grid Demonstration Project confirm the hypothesis set in this paper:

Hypothesis Adjustments of aggregate energy consumption can be achieved
with possible demand options of local energy consumption, representing a wide
range of comfort and economy levels, that can be pre-defined and dynamically
selected by incentivized consumers.

In all of the demand options studied i.e., the occupancy modes, the heat-
ing/cooling modes and their combination, a significant level of adjustments
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in the aggregate energy consumption is possible. The higher the number of
consumption modes that consumers configure, the higher the potential for ad-
justments in the energy consumption is. The combination of occupancy and
heating/cooling modes results in the highest adjustments of energy consump-
tion compared to each ones individually.

Moreover, the analytical results show that a significant degree of adjust-
ment in energy consumption is unexploited by the group of consumers with
a fixed and time of use contracts. The group of consumers with a real
time pricing contract is better incentivized within the Olympic Peninsula
Project, however, further adjustments can be achieved even in this group. Fi-
nally, various temporal and regional factors, such as the weather conditions,
influence adjustments of energy consumption. For example, higher adjustment
is observed during transition periods in which consumers behave more unpre-
dictable and vary their energy consumption significantly during their day, e.g.,
from autumn to winter.

Peer-to-peer aggregation is able to compute and aggregate these adjust-
ments in the power demand in a fully decentralized fashion without the need
of a centralized aggregator as the Olympic Peninsula Project imposes. Informa-
tion about demand is made locally available to consumers that have the option
to react to a power peak or an excessive micro-generation. This is possible by
adapting their comfort and economy levels via dynamic selections between
the possible demand options. In contrast to ALMA, the actual selections of
comfort and economy levels in the Olympic Peninsula Project are static and
pre-defined. The actual adjustments achieved in the project are smaller than
the ones computed in this section.

9 Comparison with Related Work

Compared to other related approaches [Stadler et al, 2009, Shaw et al, 2009,
Lu et al, 2005, Middelberg et al, 2009, Strengers, 2008, Ashok, 2006, Faruqui
and George, 2005] of demand-side energy management, the main advantage of
ALMA is its decentralization in the adjustment of energy consumption.

In the work of Stadler et al [2009] about load-shifting, cooling devices, such
as refrigerators, are assumed to respond to signals from the power grid. Energy
consumption is decreased during peak times or the ‘on’ states of the controlled
devices are shifted to periods with low energy demand. However, the whole
process is centrally controlled without any coordination and interactions be-
tween the responding devices. For example, it is not clear what happens when
devices shift their consumption to another time period resulting in a shift
of the peak. This is the ‘rebound effect’ discussed by Palensky and Dietrich
[2011]. Similarly, Lu et al [2005] study and model the flexibility of thermostat-
ically controlled appliances for load-shifting, however, coordination between
devices is not addressed.

Centralized coordination approaches can achieve optimal control and load-
shifting. For example, Middelberg et al [2009] propose such an approach based
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on a binary integer programming problem solved with existing methods. The
model is applied for the management of a colliery. A similar integer program-
ming model is proposed by Ashok [2006] for the management of steel plants. In
contrast to ALMA, these centralized methods are suitable and scalable within
closed industrial environments rather than within a large-scale environment
of residential consumers.

Adjustments of power demand based on price incentives are usually a-
chieved within a centralized two-way market between consumers and utility
companies. Examples of such markets are illustrated by Kok et al [2005], Ham-
merstrom [2007], Faruqui and George [2005] and Hopper et al [2006]. This
centralized approach has a significant impact on scalability and privacy as dis-
cussed in Section 2. In contrast, ALMA introduces a decentralized aggregation
and adaptation of power demand via interactions between consumers with a
minimum intervention of their utilities.

10 Discussion and Future Work

This paper shows that demand-side energy management is a complex socio-
technical problem with challenges crossing a wide range of stakeholders in
this domain. Consumers are larger in number, more distributed and dynamic
compared to producers. Furthermore, consumers evolve to prosumers having
the option to produce energy as well and actively participate in energy mar-
kets. Using peer-to-peer aggregation for demand-side energy management is
a promising approach. A knowledge transfer from the domain of distributed
computing to the evolving domain of Smart Power Grid provides new tech-
nical insights and the means for large-scale decentralized demand-side energy
management.

ALMA is based on peer-to-peer aggregation to adapt energy consump-
tion with minimum interventions from the supply-side. This potentially con-
tributes to the robustness of the Smart Power Grid and prevents system black-
outs [Pournaras et al, 2012]. Yet, future work should show the cost-effectiveness
of different peer-to-peer aggregation mechanisms in the domain of the Smart
Power Grid. Adjustments are achieved by making the aggregate consump-
tion locally available to consumers in order to adapt their selected demand
according to economic or other incentives. Selections represent the trade-off
between comfort and economy. An analysis of the power demand during the
Olympic Peninsula Project [Hammerstrom et al, 2010] shows that adjustments
of power demand are technically possible using peer-to-peer aggregation. A fur-
ther analysis of the semantic that occupancy modes have for each consumer
may provide a better understanding of the consumption behavior. Moreover,
subject of future work is the exact economic and other incentives that should
be designed to meet the maximum possible technical adjustments in power
demand. An interesting aspect that needs investigation is the degree to which
decentralization itself is an incentive or not for consumers to participate in



20 Evangelos Pournaras et al.

demand/response programs. The added benefit of user privacy, compared to
centralized approaches, can certainly help here.

Finally, note that the introduction of such highly dynamic and decentral-
ized mechanisms in a critical infrastructure such as the Smart Power Grid
raises crucial cyber-security issues [Khurana et al, 2010]. Although solutions
on security issues are out of the scope of this paper, some challenges that need
to be addressed include the integration of existing computer and radio security
countermeasures in the Smart Power Grid and the engineering of new cyber-
security systems for Internet-scale control systems. Security technologies may
require new policies and expertise in the domain of the Smart Power Grid.

11 Conclusions

This paper concludes that the demand-side energy management scheme of
ALMA can achieve adjustments in power demand by applying local selections
of consumers incentivized by their utilities. The analytical study illustrated
in this chapter, grounded to the current reality and practice of Smart Power
Grids [Hammerstrom, 2007], shows that adjustments in the aggregated energy
consumption are possible. Decentralization by using peer-to-peer aggregation
provides a higher scalability, autonomy and fault tolerance. Peer-to-peer aggre-
gation is also the means to provide to consumers a collective and summarized
information about the availability and consumption of energy resources in
the Smart Power Grid. Utilities do not need aggregate and detailed end-user
consumption information for this purpose. Beyond its technical scope, peer-
to-peer aggregation motivates alternative business and market structures for
demand-side energy management in future Smart Power Grids.
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Massoulié L, Le Merrer E, Kermarrec AM, Ganesh A (2006) Peer counting
and sampling in overlay networks: random walk methods. In: Proceedings
of the twenty-fifth annual ACM symposium on Principles of distributed
computing, ACM, New York, NY, USA, PODC ’06, pp 123–132

Middelberg A, Zhang J, Xia X (2009) An optimal control model for load
shifting - With application in the energy management of a colliery. Applied
Energy 86(7-8):1266–1273



Peer-to-peer Aggregation for Dynamic Adjustments in Power Demand 23

Nabeel Ahmed, David Hadaller SK (2006) Incremental Maintenance of Global
Aggregates. Tech. rep., University of Waterloo, Waterloo, Ontario

Nath S, Gibbons PB, Seshan S, Anderson Z (2008) Synopsis Diffusion for
Robust Aggregation in Sensor Networks. ACM Transactions on Sensor Net-
works 4(2):1–40

Ogston E, Jarvis SA (2010) Peer-to-peer aggregation techniques dissected. In-
ternational Journal of Parallel, Emergent and Distributed Systems 25(1):51–
71

Palensky P, Dietrich D (2011) Demand Side Management: Demand Response,
Intelligent Energy Systems, and Smart Loads. IEEE Transactions on Indus-
trial Informatics 7(3):381–388

Paulus M, Borggrefe F (2011) The potential of demand-side management in
energy-intensive industries for electricity markets in Germany. Applied En-
ergy 88(2):432–441

Ponciano L, Brasileiro F (2010) On the Impact of Energy-saving Strategies in
Opportunistic Grids. In: Proceedings of the 11th IEEE/ACM International
Conference on Grid Computing, Grid 2012, IEEE, Los Alamitos, CA, USA,
pp 282–289

Pournaras E, Warnier M, Brazier FMT (2010) Adaptation Strategies for
Self-management of Tree Overlay Networks. In: Proceedings of the 11th
IEEE/ACM International Conference on Grid Computing, Grid 2010, IEEE,
Los Alamitos, CA, USA, pp 401–409

Pournaras E, Yao M, Ambrosio R, Warnier M (2012) Organizational Control
Reconfigurations for a Robust Smart Power Grid. In: Internet of Things and
Inter-cooperative Computational Technologies for Collective Intelligence,
Studies in Computational Intelligence, Springer-Verlag, (to appear)

Richardson HJ (2008) A ‘smart house’ is not a home: The domestication of
ICTs. Information Systems Frontiers 11(5):599–608

Scerri P, Pynadath DV, Tambe M (2002) Towards Adjustable Autonomy for
the Real World. Journal of Artificial Intelligence Research 17(1):171–228

Schweppe F, Daryanian B, Tabors R (1989) Algorithms for a spot price re-
sponding residential load controller. IEEE Transactions on Power Systems
4(2):507–516

Shaw R, Attree M, Jackson T, Kay M (2009) The value of reducing distribu-
tion losses by domestic load-shifting: a network perspective. Energy Policy
37(8):3159–3167

Stadler M, Krause W, Sonnenschein M, Vogel U (2009) Modelling and evalu-
ation of control schemes for enhancing load shift of electricity demand for
cooling devices. Environmental Modelling & Software 24(2):285–295

Strbac G (2008) Demand side management: Benefits and challenges. Energy
Policy 36(12):4419–4426

Strengers Y (2008) Comfort expectations: the impact of demand-management
strategies in Australia. Building Research & Information 36(4):381–391

Sundramoorthy V, Cooper G, Linge N, Liu Q (2011) Domesticating Energy-
Monitoring Systems: Challenges and Design Concerns. IEEE Pervasive
Computing 10(1):20–27



24 Evangelos Pournaras et al.

Tan G, Jarvis SA, Chen X, Spooner DP, Nudd GR (2005) Performance Anal-
ysis and Improvement of Overlay Construction for Peer-to-Peer Live Media
Streaming. Simulation 82(2):169–178

Yang M, Fei Z (2007) A cooperative failure detection mechanism for overlay
multicast. Journal of Parallel and Distributed Computing 67(6):635–647


