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Abstract

This paper deals with the specification of non-interference properties in the
behavioral specification language JML. The notion of a specification pattern
for JML is introduced and it is shown how such patterns can be used to
specify non-interference properties such as confidentiality and integrity. The
main contribution of this paper is an algorithm that takes a Java source file
as input and generates a source file annotated with specification patterns
for confidentiality in JML. The algorithm works for input programs written
in a non-trivial subset of sequential Java. We prove that the specifications
generated by the algorithm are correct and express confidentiality. In case
of loops, the specifications will have to be over-approximations. Fortunately,
the generated specifications can easily be refined and combined with existing
hand-written JML specifications. The resulting specifications can be verified
using any of the JML tools.
Keywords: Specification Generation, Secure Information Flow,
Language-based Security

1 Introduction

The focus of this paper is the specification of the confidentiality property in the
Java Modeling Language (JML [22, 19]), a behavioral specification language for
Java. Confidentiality is an important security property that is notoriously hard to
enforce in computer programs. Informally, a program is called confidential if no
illegal information flow from secret input to public output variables exists. The
technical notion of non-interference [15] is used to formalize confidentiality.

Confidentiality can be expressed in JML using the notion of a so-called speci-
fication pattern for JML. As far as we know, this formalization in JML is novel.
Other work has either extended JML to be able to specify confidentiality [10] or
formalized it directly in the low-level semantics of a particular tool [9]. Both these
approaches lose the ability to use the whole range of JML tools [6] for verification,
which is one of the attractive features of JML.

Writing JML specifications for Java programs is a tedious and error-prone task.
To facilitate this problem a specification generation algorithm for a non-trivial sub-
set of sequential Java is introduced. It produces, from a Java source file, a Java
program annotated with JML specifications that express confidentiality.

The generated specifications are sound, in the sense that programs that are
confidential according to the generated specifications are indeed confidential. The
approach is not complete because our treatment of loops is an over-approximation.
However, it is easy to refine the over-approximated parts of the generated specifi-
cations manually. Another attractive feature of our approach is that we can use
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existing JML specifications to generate more precise specifications that express con-
fidentiality.
Organization of the paper : Section 2 starts with a brief introduction to JML, Sec-
tion 3 introduces the notion of a specification pattern (in JML) and shows how to
use this notion to express a JML specification pattern. Section 4 then explains how
such patterns can be generated from a Java source file. In Section 5 we formalize the
notion of non-interference and state soundness of the specification generation. Two
examples are given in Section 6. Section 7 explores how the specify termination
sensitive non-interference in JML and Section 8 discusses related work. We end the
paper with conclusions and suggestions for future work.

2 The Java Modeling Language

The Java Modeling Language (JML) is a behavioral interface specification language
designed for the specification of Java classes. It can be used for classes as a whole, via
class invariants and constraints, and for individual methods of a class, via method
specifications consisting of pre-, post- and frame-conditions. In particular, it is
possible within a method specification to indicate whether a particular exception
could occur and what postcondition holds in that case.

JML annotations are to be understood as predicates that may or may not hold
for the associated Java code. Such annotations are included in the Java source files
as special comments indicated by //@, or enclosed between / ∗@ and ∗/. They
are ignored by the Java compiler and recognized by special tools such as the JML
runtime checker, ESC/Java2, the LOOP tool, the Krakatoa verification condition
generator and the JACK tool. An overview of JML tools can be found in [6].
Example 1 shows a JML method specification of some method m():

Example 1.

/*@ behavior
requires precondition ;

assignable items that can be modified ;
ensures normal postcondition ;

signals (E) exceptional postcondition

because of exception E;
*/
public void m()

Such method specifications may be understood as an extension of the classical
correctness triples {P}m{Q} used in Hoare logic, because they allow both normal
and exceptional termination. More examples of JML specifications are given in
Section 6.

JML is intended to be usable by Java programmers. Its syntax is therefore
similar to Java’s. However, it has a few additional keywords, such as ==> (for
implication), \old (for evaluation in the pre-state), \result (for the return value
of a method, if any), and \forall and \exists (for quantification).

JML also supports so-called model fields [5]. A model field is a field that is not
accessible by the Java code, i.e., a specification only field. It should be thought
of as the abstraction of one or more concrete fields [7]. Model fields are related
to concrete fields via JML’s depends clause, which indicates the concrete fields on
which a model field depends, and a represents clause, which specifies exactly how
a model field is related to concrete fields.

2



The ghost keyword indicates another specification-only field in JML. Values of
ghost fields are not determined by represents clauses, instead they are assigned
directly using the JML keyword set. Values of ghost fields can be changed inside
the body of a method.

3 A specification pattern for confidentiality

In the examples in this paper we use the simple security lattice Σ, formally it is
defined as {High, Low} with Low v High. A secure information flow policy is then
given by the function Sif : Var → Σ which maps variables to security levels in the
simple security lattice. We will abuse notation by identifying security levels and the
sets of variables corresponding to those levels, i.e. High = {v ∈ Var | Sif(v) w High}
and Low = Var \ High.

We formalize confidentiality using the notion of non-interference [15]. Our for-
malization of non-interference in JML is inspired by the work of Joshi and Leino [20].
They define a semantical notion of confidentiality as an equality relation on fields
( .=) for a program S in terms of a composition with a special program HH. I.e., a
program S is confidential if:

HH ; S ; HH
.= S ; HH

Where the program HH is defined as “assign arbitrary values to variables of
security type High”. We will make this definition formal in Definition 8.

For an observer who can only see fields of type Low the two programs are ob-
servationally equivalent provided that the final values of Low fields do not depend
on initial values of High fields. In other words, low fields low in the post-state are
independent of the values of the high variables high in the pre-state.

Notice that there is a relation between the pre- and post-state here. In JML it is
possible to express such relations using the keyword \old. If used in a postcondition,
variables encapsulated by \old are evaluated in the precondition. This makes it
possible to use a formulation of confidentiality in JML that is equivalent to Joshi
and Leino’s definition. This equivalence is made precise in Section 5.

Pattern 1 (specification pattern for confidentiality).
The semantic notion of confidentiality above (also see Definition 8) can be ex-

pressed in JML as a specification pattern:

ensures low == \old(χ)

For all low ∈ Low. With the restrictions that none of the fields high∈ High appear
inside χ.

By proving for a Java method that all fields low ∈ Low are independent of
fields high ∈ High in the pre-state, we have proved confidentiality for that Java
method1. The meta expression low == \old(χ) is called a specification pattern for
confidentiality.

Integrity, as the formal dual of confidentiality, can easily be expressed using a
similar specification pattern: high == \old(χ) where χ is again a Java expression
that cannot contain any fields low ∈ Low. This paper focuses on proving confiden-
tiality, but all techniques described in the sequel are equally applicable to integrity.

1Of course the specification pattern has to be meaningful, e.g., low ==
\old((high == 1)?low = 0 : low = 0) does not prove a breach of confidentiality since this is
equivalent to a simpler pattern low == \old(0) for which it is clear that it does not break
confidentiality.
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The specification pattern for confidentiality can be used to prove one of the most
common –and weakest– forms of non-interference know as termination insensitive
non-interference. Informally it can be understood to mean that the non-interference
property is only specified if the program terminates normally. If the program ter-
minates with an exception or does not terminate at all (loops) a non-interference
property is not guaranteed.

Stronger forms of non-interference also take termination behavior into account
and even consider so-called covert channels [21], such as timing [1, 3], resource
consumption or caching, to leak information. We will not discuss covert channels
here, termination behavior is discussed further in Section 7.

4 JML specification generation

This section shows how the specification pattern for confidentiality in JML can be
generated from a Java source file. We will not show this for the complete sequential
part of Java, but only for a small subset thereof, which we shall call Core Java. We
think that this subset is complex enough to show the applicability of our approach.
The language supports side effects, both normal and a form of abrupt termination
(via return statements), (non-recursive) method calls as well as the usual control
flow mechanisms such as branching and looping.

Definition 1 (Core Java). The syntax for the core Java language is given by

Expr e ::= c | v | e1 op e2 | e1 ? e2 : e3 | m(−→e )
Statement s ::= skip | v := e | s1; s2 | if (e) s1 else s2

while (e) s | return e

where op is either a primitive operator +, -, *, a comparison operator <,≤,=, or
one of the (unconditional) boolean operators | and &; := is assignment, v ranges
over variables, c ranges over constants.

The specification generation algorithm is given by a dedicated strongest postcondi-
tion calculus (sp) which takes as argument a list of variables –called an abstract state
list– and a statement and calculates for each of these how they relate to other fields
and parameters in the pre-state. We introduce the following notational conventions:
[α, β, γ] is a list with elements α, β and γ, [h : t] is a list with head-element h and
tail t, a single letter l also represents a list.

Two different kind of specification generation rules can be distinguished: (i)
precise rules for the non-looping part of Core Java. These give an exact specification
in JML of the specification pattern for confidentiality, and (ii) approximate rules for
complete Core Java, these give an over-approximation that manually can be refined
by the user.

4.1 Specification generation for the non-looping statements

For presentation purposes we first explain the basic idea for the subset of Core
Java that only contains skip, assignment, composition and if-then-else as possible
statements and does not allow side-effects in expressions, nor return statements,
method calls or loops. Definition 2 should explain the basic idea.

Definition 2 (Rules for non-looping statements).
sp(l, skip) = l
sp(l, x := e) = l〈x 7→ val(e, l)〉
sp(l, s1; s2) = sp(sp(l, s1), s2)
sp(l, if (e) s1 else s2) =
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let l1 = sp(l, s1)
l2 = sp(l, s2)

in [xi 7→
{

l1[xi] if l1[xi] = l2[xi]
e ? l1[xi] : l2[xi] otherwise

∣∣∣∣ i ∈ N]

The function sp above calculates for each variable in scope how it relates in the
post-state to variables in the pre-state of a method. Each variable in the state
list is coupled with an expression. In the pre-state each variable is coupled with
itself and when an expression is assigned to it the expression is coupled with the
assigned variable. This can be seen in the assignment rule. We use the val function,
defined below, to relate the variable x to an expression that is to be evaluated in
the pre-state.

Definition 3. We define val : Expr × List → Expr inductively as follows:

val(v, l) = l(v)
val(c, l) = c
val(e1 op e2, l) = val(e1, l) op val(e2, l)

Furthermore, notice how Java’s −?− : − operator is used in the if-part to merge
the state lists generated for both branches. The remainder of Definition 2 should
be self-explanatory.

A typical example of a state list in the post state is {(a 7→ a), (b 7→ a), (c 7→ d?a :
b)} which is desugared in the JML ensures clause ensures a == \old(a) && b ==
\old(b) && c = \old(d?a : b). Of course, to actually determine if a method is

confidential or leaks secret information we also need a secure information policy
that labels each variable with a security level.

Next we add return statements (without return values) which give rise to an
abrupt termination. This means in particular that a method can have multiple
exit points. To model this behavior correctly we modify the list data type to a list
of lists (denoted with capital letter L) and use the symbol ∗ to represent abrupt
termination2. Definition 4 gives the specification generation rules when a return
statement is added. We have omitted the rules for skip and assignment that stay
the same as in Definition 2.

Definition 4 (Rule for non-looping statements, including return).

sp(L, return) = [∗ : L]
sp(L, s1; s2) =

let [l1 : L1] = sp(L, s1)

in

{
sp([l1 : L1], s2) if l1 6= ∗
sp(L, s1) otherwise

sp([l : L], if (e) s1 else s2) =

2I.e., our list data type is a lifted type with ∗ as bottom type
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[
[xi 7→

{
l1[xi] if l1[xi] = l2[xi]
e ? l1[xi] : l2[xi] otherwise

∣∣∣∣ i ∈ N] : L

]
where

[l1 : L] = sp([l : L], s1) with l1 6= ∗
[l2 : L] = sp([l : L], s2) with l2 6= ∗[

[xi 7→
{

l1[xi] if l1[xi] = l2[xi]
e ? l1[xi] : l2[xi] otherwise

∣∣∣∣ i ∈ N] : [l1 : L]
]

where
[∗ : [l1 : L]] = sp([l : L], s1) with l1 6= ∗
[l2 : L] = sp([l : L], s2) with l2 6= ∗[

[xi 7→
{

l1[xi] if l1[xi] = l2[xi]
e ? l1[xi] : l2[xi] otherwise

∣∣∣∣ i ∈ N] : [l2 : L]
]

where
[l1 : L] = sp([l : L], s1) with l1 6= ∗
[∗ : [l2 : L]] = sp([l : L], s2) with l2 6= ∗[

∗ : [xi 7→
{

l1[xi] if l1[xi] = l2[xi]
e ? l1[xi] : l2[xi] otherwise

∣∣∣∣ i ∈ N : L]
]

where
[∗ : [l1 : L]] = sp([l : L], s1) with l1 6= ∗
[∗ : [l2 : L]] = sp([l : L], s2) with l2 6= ∗

The if-rule becomes so complicated because of the multiple termination modes which
leads to four different parts depending on the termination behavior of a branch. The
main complication is then how to appropriately merge both branches.

We furthermore add method calls, which we assume to be non-recursive. Defi-
nition 5 gives the rule for method calls.

Definition 5 (Non-looping strongest postcondition rules (part 3)).

sp([l : L],m(−→e )) =
let (−→a , l) = ∆(m)

l1 = l〈−→a /−→e 〉
in [

[xi 7→
{

l[xi] if l1[xi] = xi

l1[xi] otherwise

∣∣∣∣ i ∈ N] : L

]
For method calls the (previously) generated list of the called method is looked up
in the context ∆. Note that this also makes the analysis modular.

Together, the functions defined in Definition 2, Definition 4 and Definition 5 can
be used to generate a specification pattern for confidentiality in JML.

4.2 Approximate strongest postcondition calculus

The techniques discussed in this section are sound and the specifications can be
produced automatically from the Java source code, but in general the results will
no longer be precise. That is, in some cases the generated specification pattern will
suggest that there is a dependency between variables of security levels Low and High
that is in fact not there. The generation of specification patterns for programs that
contain while statements thus forms an over-approximation.

The basic idea here is to use JML model fields to express dependencies between
fields. The specification pattern generating algorithm will introduce a model field
together with its depends clause. The user can also chose to manually specify a
represents clause which has to be verified independently with one of the JML
tools. This refinement is optional, the user can chose to not give a represents clause
at the cost of more false positives.
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In order to deal with model fields, the type of abstract state lists (which used to
be Var → Expr) is extended to Var → Expr +P(Var). In this way we can specify the
exact expression for normal variables, as well as a finite set of depending variables
for model variables. We overload the free variables function FV to take arguments
of type Expr + P(Var): for expression arguments the function is defined as usual,
and for variable set arguments it is simply identity.

The strongest postcondition rule for while statements uses an auxiliary function
amv (for “add model variables”) which is defined in Definition 6. Its purpose is to
add fresh model fields to an abstract state list depending on the variables in the
condition and the body of the while. Each potentially assigned variable is paired
with its respective model field, which in turn has in its depends clause all possibly
depended variables. This is illustrated in Example 3 in Section 6.

Definition 6 (amv function). The amv function (for “Add Model Variables”) is
inductively defined as:

amv(V, l, x :=e) = l[x 7→ x] ::[ x← FV(e) ∪ V ]
amv(V, l, s1; s2) = amv(V, amv(V, l, s1), s2)
amv(V, l, if (e) s1 else s2) =

[xi 7→


l1[xi] if l1[xi] = l2[xi]
l1[FV(l1[xi])] ∪ l2[FV(l2[xi])] otherwise

˛̨̨̨
i ∈ N]

where l1 = amv(V ∪ FV(e), l, s1)
l2 = amv(V ∪ FV(e), l, s2)

amv(V, l, while (e) s) = amv(V ∪ FV(e), l, s)

Note that in case of conditional statements, amv uses double indexing in order to
compute the set of variables on which a model variable depends in the pre-state.
The notation l[V ] is shorthand for

⋃
{FV(l[x])|x ∈ V }.

The actual rule for generating an appropriate specification pattern for confiden-
tiality is then straightforward. Definition 7 displays the strongest postcondition
rules for while statements.

Definition 7 (Approximate strongest postcondition calculus).

sp([l : L], while (e) s) = sp([amv(FV(e), l, s) : L], s)

Note that there are still two possible results here, depending on termination behavior
of the body of the whole while will terminate normally or with a return statement.
Here it also becomes clear that our formalization forms an over-approximation, since
the while statement might actually terminate normally or not terminate at all. The
remainder of the analysis uses the sp function from the previous section. Model
fields are treated exactly the same as the other variables.

In order to analyze the complete Core Java language from Definition 1 we add
side-effects in expressions. This is relatively straightforward, because we can syntac-
ticly desugar expressions with side-effects into a statement composed with side-effect
free expressions. Adding return values to methods is also straightforward since these
are simple bound to the special JML variable \result. Because of size constraints
we do not elaborate on this further.

4.3 Using existing JML specifications in the specification
generation

Existing JML specifications can be used to help guide the specification generation
process. We identified a couple of places where this is useful. We do not claim that
the list we give is exhaustive, other JML specification constructs can possibly also
be used in generating more precise specification patterns.
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• Frame conditions which are specified in the assignable clause are very useful
during program verification, because they limit the parts of the heap that can
be modified by a method. In the specification generation all fields that are
not part of the assignable clause necessarily cannot be interfering. Thus these
fields can be ignored when analyzing a method. Similarly we know that with
pure methods (methods without side effects) one only has to check for non-
interference of the return value.

• Readable if clauses can be used in JML to specify that a condition (in Java)
must be true before the field named in the readable if clause can be read [23,
§8.7]. Such clauses can be used to simplify the treatment of branching and
refine the treatment of loops. Extending JML with a general readable clause,
similar to the assignable clause, can also simplify matters considerable. It
seems like a good idea to do this, because readable clauses are helpful with
program verification in general [4].

• Assertions can be used to specify, for example, that an object (say obj) is not
a null reference by //@ assert obj ! = null. Such assertions are especially
useful when the coverage of non-interference is extended to a termination sen-
sitive variant. In a regular Java program every object can be a null reference
and thus possibly throw an exception. This forms in essence another form of
branching and it has a similar solution as the if-then-else rule proposed above,
including all the bookkeeping for every object. If we know for sure that an
object is non-null, things are simplified considerably since we only have to
consider one execution branch.

Of course, general assertions can also help, e.g., assertions can state precise
information on the relation of a variable with others fields in the pre-state.
Which in turns either limits the analysis or can serve as a check and possible
refinement at the point of the assertion.

The possibility of using existing specifications to solve multiple problems is al-
ways a nice thing. We expect that in practice if formal specification and verification
of a non-interference property is necessary then other security and safety properties
will also be considered, making (re)use of JML specifications more likely.

5 Soundness of the specification generation

In this section we formalize the notion of non-interference and state that the spe-
cification generation algorithm is sound, that is that if the generated specification
pattern for confidentiality indicates that a method does not leak information then
this is indeed the case.

We assume a denotational semantics [[−]], which maps elements of Statement
to partial functions from State to State. Likewise, we assume a semantics [[−]]
exists, which maps elements of Expr to appropriate values. See, for instance, [26].
Furthermore, we assume a context Γ of method declarations, such that Γ(m) yields
(−→a , s) where −→a is a list of formal parameters, and s ∈ Statement is the body of the
method with name m.

Before we can state soundness of our approach, we first formalize the notion of
non-interference introduced in Section 3.

Definition 8 (non-interference). Given a secure information flow policy Sif.

1. Let s ∈ Statement, we define (semantical) non-interference to be

nonint(s,Sif) =
∀q ∈ State∀pHigh : State → State ·

(
pHigh([[s]]pHigh(q)

) = pHigh([[s]]q)
)
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where pHigh(q) assigns values to variables in High independent of q, but leaves
the values of variables in Low unchanged, i.e.

• v ∈ High ⇒ ∀q, q′ ∈ State ·
(
pHigh(q)(v) = pHigh(q′)(v)

)
,

• v ∈ Low ⇒ ∀q ∈ State ·
(
pHigh(q)(v) = q(v)

)
.

2. Let l be a abstract state list, we define (syntactical) non-interference to be

nonint(l, Sif) = ∀v ∈ Low · FV(l(v)) ∩ High = ∅

3. Let L be a list of abstract state lists, we abuse the above notation to define

nonint(L,Sif) = ∀l ∈ L · nonint(l, Sif)

In the sequel we drop the Sif argument of the nonint predicates, whenever the secure
information flow policy is clear from the context.

We prove two theorems. The most important of these is Theorem 4 which gives
the soundness result for the specification generation of specification patterns of
confidentiality for Core Java.

For non-looping statements, the algorithm generates correct post-conditions.
This is formalized in the following lemma.

Lemma 1. Let s ∈ Statement, s 6= while (e) s. There exists an l ∈ sp(L, s) such
that for all q ∈ State, v ∈ Var:

[[s]]q(v) = [[l(v)]]q

Proof. Induction on the structure of s.

(Note that since we have not given formal definitions of [[−]] (for brevity’s sake),
we can only hint at the proof of Lemma 1.)

Theorem 2 (Soundness for non-looping statements). The strongest postcondition
calculus defined by Definition 2, Definition 4 and Definition 5 is sound:
Let s ∈ Statement, s 6= while (e) s, then

nonint(sp(L, s)) ⇒ nonint(s)

Proof.
Suppose nonint(sp(L, s))
Let v ∈ Var, q ∈ State and PHigh : State → State.
By Lemma 1 we have an l ∈ sp(L, s) with

[[s]]q(v) = [[l(v)]]q and
[[s]]pHigh(q)

(v) = [[l(v)]]pHigh(q)
.

If v ∈ Low then
since no variables from High occur in FV(l(v)), [[l(v)]]q = [[l(v)]]pHigh(q)

.
Therefore pHigh([[s]]q(v)) = pHigh([[s]]pHigh(q)

)(v).
If v ∈ High then

the values of pHigh([[s]]q)(v) and pHigh([[s]]pHigh(q)
)(v) are completely

determined by pHigh (independent of [[s]]q and [[s]]pHigh(q)
) and are there-

fore equal.
Thus, pHigh([[s]]pHigh(q)

) = pHigh([[s]]q).

In order to prove soundness for all strongest postcondition rules lemma 1 needs
to be weakened:
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Lemma 3. Let s ∈ Statement. There exists an l ∈ sp(L, s) such that for all
q ∈ State, v ∈ Var: If s terminates (when started from q), then

1. if l(v) ∈ Expr, then [[s]]q(v) = [[l(v)]]q,

2. if l(v) ⊆ Var, then ∃e ∈ Expr ·
(
FV(e) ⊆ l(v) ∧ [[s]]q(v) = [[e]]q

)
.

Proof. Induction on the structure of s. The case for while uses induction to the
number of times the body is executed.

(Note that since we have not given formal definitions of [[−]] (for brevity’s sake),
we can only hint at the proof of Lemma 3.)

The actual soundness prove for all the strongest postcondition rules is then
straightforward:

Theorem 4 (Soundness of all rules). The strongest postcondition rules defined by
Definition 2, Definition 4, Definition 5 and Definition 7 are sound:
Let s ∈ Statement, then

nonint(sp(L, s)) ⇒ nonint(s)

Proof. Analogous to Theorem 2.

6 Specification generation examples

In this section the JML specification generation is illustrated with two examples:
an example with and one without a loop.

6.1 Non-looping specification generation

Example 2 contains two methods: int decrementhigh(int i) and void m() (the
latter calls decrementhigh). There are only two fields, high and low which have
security level High and Low respectively.

For clarity we show the full ensures clause –including the expressions for high,
which are not necessary for expressing confidentiality– and the state lists in the
pre-and postcondition for both methods.

Example 2.

int high,low; // high:H, low:L

// pre : [{(low,low), (high,high), (i,i)}]

//@ assignable high;

//@ ensures \result == \old(i);

//@ ensures high == \old(high - 1);

int decrementhigh(int i){

high = high -1;

return i;}

// post : [*, {(low,low), (high,high - 1), (i,i), (\result,i)}]

// pre : [{(low,low), (high,high)}]

//@ assignable low,high;

//@ ensures low == \old(high);
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//@ ensures high == \old(high - 1);

void m(){

low = decrementhigh(high);}

// post : [{(low,high), (high,high - 1)}]

The specification of method decrementhigh(int i) follows directly from the rules.
Method m() is more interesting, because the generated list of the other method is
used in the method call. Notice that since high is passed along as a parameter to
method decrementhigh there is a dependency between field low and the value of
high in the pre-state and the method thus leaks information.

6.2 Approximate specification generation

Example 3 illustrates JML specification generation –using the specification pattern
for confidentiality– for a method with a loop.

Example 3.

//@ model int _high, _low;
//@ depends _high <- high
//@ depends _low <- high,low;
//@ represents _low <- high; // optional refinement by user

int high,low; // high:H low:L

//@ requires high > 0;
//@ assignable high, low;
//@ ensures low == \old(_low); // low == \old(high);

void m() {
low=0;
while (high > 0){
high--;
low++; } }

We assume that the requires clause is given, the assignable clause is added
for completeness sake, it does not play a role in the actual specification generation.
Note that the method leaks information; after evaluation the field low will have the
value of field high in the pre-state which represents an illegal flow of information
from security level High to level Low.

The JML specification generation for while statements will automatically gener-
ate the model, depends and ensures clauses. The JML specification is still partial
since the model fields3 do not have an explicit represents clause. The specifica-
tion does suggest that there is a problem since field low is equal to the value of the
model field low in the pre-state and low depends on variable high (and low), thus
representing an illegal flow of information that breaks confidentiality.

However, our analysis method is an over-approximation, so in principle it is
possible that method m() does not leak any information. Indeed, for this reason the
user can add a represents clause to verifying that low depends on the value of
field high in the pre-state, as is indicated in Java comment in the example.

3We use the convention that model fields always start with an underscore ‘ ’. This makes it
easier to distinguish them from normal fields and also makes implicit relations between model and
normal field more transparent, i.e., x and x are related.
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7 Towards termination sensitive non-interference

This paper focuses on termination-insensitive non-interference, meaning that the
non-interference property (confidentiality, integrity) is only guaranteed if the ana-
lyzed program terminates normally. If the program terminates with an exception
or does not terminate at all (hangs), non-interference is no longer assured.

The specification pattern for confidentiality can easily be used in signals clauses
as well. When used in this way, it expresses that if an exception of a certain type
is thrown then the non-interference property holds. The specification generation
algorithm can be extended to incorporate exceptions and use such signals clauses
at the cost of more complex rules, especially involving more bookkeeping, since the
termination behavior needs to be encoded into the abstract state. Exceptions in
Java also complicate the control flow mechanism, since they can be caught and thus
do not have to show at the outside of a method.

Similarly, it is possible to use the specification pattern for confidentiality in
JML’s diverges clause. Such a specification pattern states for which precondition a
non-interference result holds provided the method does not terminate. Such diverges
clauses have to be given by the user since determining if a program terminates is
undecidable in general.

Termination behavior itself can also leak information, as illustrated by Exam-
ple 4:

Example 4.

boolean high; // high:H

public void m(){
if(high) throw new Exception();

}

Assuming the termination behavior of a program is observable, the value of field
high is leaked. Such cases of information leakage are not covered by the specifi-
cation pattern for confidentiality. Termination sensitive non-interference can easily
be specified in JML using the normal behavior and exceptional behavior key-
words, which specify that the method must terminate normally or with an exception
respectively. In effect this makes termination sensitive and insensitive termination
coincide, because only one termination mode per method is allowed.

More generally, termination sensitive non-interference in JML can be specified
using a JML ghost field, as illustrated by Example 5:

Example 5.

boolean high; // high: H;

//@ public ghost int _tmode;

/*@ invariant _tmode == 0 || // normal termination
_tmode == 1 || // exceptional termination
_tmode == 2; // non-termination

*/

//@ ensures \old(high) ==> _tmode == 1;
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//@ ensures !\old(high) ==> _tmode == 0;
public void m() throws Exception{

if (high){
//@ set _tmode = 1;
throw new Exception();

}
//@ set _tmode = 0;

}

By encoding the termination behavior of a method in the ghost field we can specify
that the value of field high in the pre-state determines the termination behavior of
the method. Thus information is leaked via the termination behavior of method m().
Notice how the invariant is used to guarantee that there are only three termination
modes.

The specification pattern for confidentiality is no longer used. A specification
that has the ambition to specify termination sensitive non-interference in JML
should use the specification pattern for confidentiality and should specify how the
value of each High field in pre-state influences termination behavior of a method.
Automatically generating termination-sensitive non-interference specifications is left
for future work.

8 Related work

In the context of the SecSafe project [13] several security properties which are
relevant for Java Card applets have been identified [24], they concern amongst
others the absence of certain exception types at the top-level, atomicity of updates,
no unwanted overflow, only memory allocation during the install phase of the applet
and conditional execution points. All these points can either be expressed directly in
JML or in the underlying semantic model used by one of the JML tools, as is shown
by several researchers [25, 27, 17, 18, 16]. Expressing non-interference properties
like confidentiality and integrity directly in JML has, to the best of our knowledge,
not been done before.

The work of Dufay, Felty and Matwin [10] is probably most related to ours. They
add keywords to JML that express confidentiality and have modified the Krakatoa
tool [8] in order to prove non-interference properties for this extended version of
JML. The main disadvantages of this approach is that only the (modified) Krakatoa
tool can be used to prove their extended JML annotations. Thus making one of
JML’s most attractive features –its tool-support– obsolete.

The group behind the KeY-tool [2] uses a similar approach to ours (also based on
Joshi and Leino’s paper [20]) to prove confidentiality [9]. The main difference is that
they do not use a separate specification language but express confidentiality directly
in the dynamic logic which they use to reason (interactively) about sequential Java
(Card) programs.

Secure information flow is still a very active research field, most other related
work is based on security typing [29]. An overview of the field can be found in [28].

The notion of a specification pattern originated in the work of Dwyer et. al.
[11]. They noticed that patterns emerge when specifying temporal properties for
concurrent systems. To the best of our knowledge specification patterns for JML
have not been proposed before.

Other tools that automatically generate JML specifications are Daikon [12] and
Houdini [14]. Both tools take no input (besides the source of the to be specified
program) and use heuristics to generate likely invariants and pre- and postconditions
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for programs. Such tools are usually used to generate a basic specification skeleton
that has to be improved manually by the user.

9 Conclusions and future work

We show the feasibility of applying JML for specifying non-interference properties
like confidentiality and integrity using specification patterns for JML. A sound algo-
rithm for automatic generation of such specifications is introduced. Existing JML
specifications can be used to generate more precise specifications. Moreover, it is
possible and straightforward for users to refine the generated specifications.

For future work we intend to implement the specification generation algorithm
and extend it to support all parts of sequential Java. We also want to investigate
if more complex secure information flow policies, e.g., with declassification mecha-
nisms, can be used as a basis for generating JML specifications. Finally, generating
JML specifications that express stronger forms of non-interference, e.g., taking into
account termination behavior, is another research challenge.
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