Deploying BDI agents in open, insecure
environments

Rogier C. van het Schip, Martijn Warnier, Frances M.T. Brazier

Section Systems Engineering,
Faculty of Technology, Policy and Management,
Delft University of Technology,
The Netherlands
{m.e.warnier, f.m.frances}@tudelft.nl

Abstract. Secure deployment of agents in open, insecure environments
is a challenge, for which a number of multi-agent system (MAS) frame-
works have been designed. Secure deployment of BDI-based MAS in such
environments, however, has yet to be addressed. This paper proposes an
architecture to securely support large-scale, heterogeneous, BDI-based
multi-agent systems, using Jason and AgentScape to illustrate the ap-
proach. An example scenario in which BDI agents negotiate the price of
electricity in an open energy market sets the stage.

1 Introduction

One of the most predominant modeling paradigms within multi-agent design,
is the Beliefs-Desires-Intention (BDI) [5,12] paradigm. BDI agents explicitly
reason about other agents and their dynamic environments. To date, however,
most BDI agents do not often reason about their own security in open, insecure
environments.

There is no fundamental reason why BDI languages cannot be supported by
agent middleware designed to this purpose [8]. This paper proposes an approach
to support a BDI system with an agent middleware platform that provides secure
support for large-scale, heterogeneous, multi-agent systems.

This paper addresses the integration of a BDI system with an agent platform,
Jason [3,4] with AgentScape [19], thereby allowing Jason agents to run on Agent-
Scape middleware. The new integrated system extends Jason’s functionality with
Web service access [21], agent identity management, secure and anonymous com-
munication [28] and access to configuration [20] and directory [27] services using
an agent platform built for security [24]. Jason adds BDI-like agent programming
to AgentScape.

Most BDI agent systems such as Jadex [23] and 2APL [7] are supported by
the JADE [1] agent platform. The Jason system is also be supported by JADE,
however JADE has some limitations which make secure deployment in large open
environments difficult. See Section 2 for more on this issue.

The next section discusses the scientific and engineering contributions of inte-
grating both systems, before describing both the Jason and AgentScape systems

in Section 3. The following section details the design of the integrated system
and AgentScape’s expanded functionality is illustrated in Section 5, using a sce-
nario of Jason agents negotiating the price of electricity in a large-scale, open
environment. This paper ends with conclusions and suggestions for future work.

2 Contributions

Autonomous agents are widely regarded as the next step in Grid resource ne-
gotiations or autonomous Web services [10, 22]. Such autonomous agents can be
designed to reason using cognitive structures, such as goals, beliefs and plans.
To enable the use of these cognitive agents in such open, large-scale and, inher-
ently, insecure settings, platforms are needed that support these agents in their
operation.

To support this operation, the integrated agent platform must meet several
requirements:

— The platform must be scalable, in order to support tens of thousands of

agents.

Agents running on the platform must be secured from other, possibly mali-

cious, agents.

— The cognitive reasoning of such agents must be supported.

— Because of the openness of the platform, agents must be allowed to operate
anonymously in order to, for example, be protected against buyer profiling.
This also provides additional security against malicious agents.

To enable the use of such platforms, this paper discusses an engineering
approach to this problem. A system is described that supports secure deployment
of BDI agents in open, large-scale environments, which by supporting Jason BDI
agents on the AgentScape middleware platform.

The existing integration of Jason into JADE supports several aspects of se-
cure deployment of multi-agent systems. However, this paper argues that this
integrated system is not yet suitable for the deployment of BDI agents in open,
large-scale systems: JADE features a global lookup service [2]. Local caches
of this service are used to cover most requests for information, but the global
lookup cache must be consulted for unknown information. Given enough re-
quests, this global service becomes a bottleneck to the operation of the agent
platform. AgentScape’s Foncation [20] lookup service operates distributed, elim-
inating this bottleneck to allow multi-agent systems to grow to truly large scale.

In addition, JADE features an Agent Management System (AMS) that man-
ages the operation of a (JADE) agent platform, such as creation and deletion of
agents. It also controls use of and access to the platform and maintains a list of
agents running on the platform and agents must request administrative actions
from the AMS [2]. Such a single AMS forms another bottleneck for large scale
deployment of the JADE system.

Finally, by default JADE has no support for security. And while it’s possible
to use extensions to JADE, such as JADE-S [17] and SAgent [14], these exten-
sions are outdated and are no longer deployed in practice. They also lack certain
security features, in particular agent anonymity.

The most important functional requirements for integration of the Jason
system with the AgentScape platform are:

— Jason agents must be able to perform all operations to which they are ac-
customed, in the same way as usual. Backwards compatibility with existing
applications must be maintained.

— New operations for Jason agents should be implemented as extensions to the
current framework.

— Jason agents are provided the same support as all other AgentScape agents:
secure communication with other (non-Jason) agents, access to internal ser-
vices (e.g. web service access gateway, anonymity service). This also means all
message sending and Web service access must be done through the platform,
to allow the platform to monitor agents and their resource consumption.

Jason agents should be able to call the same (Jason) operations as before.
Custom internal actions, which allow Jason agents access to (non-Jason) program
code, are used to extend the functionality provided to Jason agents. Access to the
webservice gateway, for example, should be (and are) implemented as a custom
internal action, using familiar syntax. The Agent API should not be (and has
not been) adapted.

3 Background

This section briefly describes the Jason and AgentScape systems.

3.1 Jason

Jason [3,4] is an interpreter for an extended version of AgentSpeak(L). Agent-
Speak(L) is a high-level programming language for the design of cognitive agents
and was developed by Rao in 1996 [25]. It is based on the Beliefs-Desires-
Intentions (BDI) theories of Bratman [5] and the Procedural Reasoning Sys-
tem [12], designed by Georgeff. Jason adds several features to AgentSpeak(L),
such as plan failure handling, inter-agent communication and an extensible set
of internal actions, which allow an agent access to Java programmed code.

The Jason system is modular and extensible, and runs on different middle-
ware platforms. All of Jason’s BDI reasoning is performed in a Jason agent’s
own reasoning cycle, as part of an agent’s BDI engine. The BDI engine passes
calls to middleware-dependent methods to Jason’s second major component, the
infrastructure. The infrastructure maps calls to the underlying middleware and
back.

3.2 AgentScape

AgentScape [29] is an agent middleware platform designed for scalability, secu-
rity, heterogeneity and interoperability. AgentScape supports multiple operating
systems, e.g. Windows, Linux, Solaris and Mac OS X, and various programming
languages, e.g. Java, Python and C. AgentScape provides FIPA compliant secure
inter-agent communication [6] and weak agent mobility [11].

Agents run in locations. A location is a group of computers (hosts) that belong
to a single administrative domain, coordinated by a location manager. Each host
has its own host manager. An example of a number of AgentScape locations is
depicted in Figure 1. As depicted, the hosts need not be homogeneous.

<! m | i (O agent
£ 0L 50 OO0 50 0 0
3 9. 1 O service
3 ' |AgentScape| IAgentScape |AgentScapef| 3 ' |AgentScape| /AgentScape]
middleware middleware middleware ' |middleware middleware
Solaris ‘ Linux W2K/XP Solaris Mac OS X

Fig. 1. AgentScape locations host agents and services. Each location can consist of
multiple, possibly heterogeneous, hosts

AgentScape runs several internal middleware services, a number of which are
depicted in Figure 2: location and host managers, agent servers and a web ser-
vice gateway [21]. Note that in practice a host often runs several agent servers:
at least one for each of the languages it supports. Internal middleware services
include, for example, an internal lookup service, an anonymity service and a
fault tolerance service In addition to internal middleware services, AgentScape
provides external services such as distributed directory [20] services and config-
uration [27] services.

AgentScape
@ component
AgentScape i
interface of
APl T o B omponent
Agent Host Location Ser\(/eice
Server Manager Manager Gateway
AgentScape

kernel interface
AOS kernel

Fig. 2. The architecture of an AgentScape platform

Agents access AgentScape through the AgentScape API. This is basically the
only requirement: there are no further requirements with respect to their design.

4 Architecture overview

As stated above, calls from a Jason agent’s BDI engine that need to be handled
by the underlying middleware are forwarded to an agent’s infrastructure. For
AgentScape to support Jason agents, this layer thus needs to convert Jason calls
to AgentScape calls. The Jason infrastructure is, in fact, a partial infrastructure,
as only two classes of a regular Jason infrastructure are needed in the AgentScape
infrastructure:

— AgentScapeAgArch, the Jason agent architecture
— AgentScapeRuntimeService, supporting Jason runtime services

In effect, the entire Jason BDI engine operates as a complex agent inside
AgentScape, using the infrastructure to convert its actions and decisions into
AgentScape API calls, also see [26]. This result can be seen in Figure 3: the two
classes of the infrastructure reside on top of the AgentScape API and provide
AgentScape’s functionality to the Jason BDI engine.

Jason's
BDI engine

/ \ Infrastructure

‘ AgentScapeAgArch

AgentScape API /

AgentScapeRuntimeServices

AgentScape

Fig. 3. The design of the integrated system

This design achieves a clear separation between AgentScape and Jason. An
update or change to either system does not require major changes to the infras-
tructure!.

! The system was designed for use with the Jason 1.1 version. During design, the 1.1.2
version of Jason was released. No changes to the infrastructure were needed.

4.1 Agent Architecture

In the infrastructure, one class represents a Jason agent architecture. It is known
as the AgentScapeAgArch. This class implements the interface of a Jason agent,
allowing it to pass messages to the BDI engine and send messages on behalf
of the agent. To make calls to the AgentScape API, this class also extends
AgentScape’s Agent class. This provides the class with access to the AgentScape
APT and therefore to all of AgentScape’s functionality.

The AgentScapeAgArch handles all functionality of a Jason agent architec-
ture. As it is also registered as an AgentScape agent, it has access to all function-
ality offered by the AgentScape API. The AgentScapeAgArch starts and stops
a Jason agent and handles inter-agent communication. For each internal action
that requires middleware access, the AgentScapeAgArch provides a function. For
example, to send a message, an agent’s reasoning cycle calls its internal action
send, which resides inside the BDI engine. In turn, this internal action calls the
relevant method in the infrastructure, which is programmed to call the relevant
method of the middleware used. The middleware handles the message, delivering
it to the other agent, albeit a Jason agent or another agent.

AgentScapeAgArch also allows an agent access to new internal actions pro-
vided by the AgentScape middleware. For example, an AgentScape agent can
request the name of its current (AgentScape) location, access AgentScape’s Web
service gateway, or access AgentScape’s anonymity service, using custom inter-
nal action and a special function in the AgentScapeAgArch. For more details on
access to the web service gateway, see Section 4.4.

4.2 Runtime Services

The second component of the infrastructure is known as the AgentScapeRun-
timeServices. This class supports the AgentScapeAgArch. It provides runtime
services to Jason agents. For example to start and stop agents, whenever re-
quired by the Jason BDI engine. As in the AgentScapeAgArch, the Jason BDI
engine accesses these functions through internal actions. Despite not being an
AgentScape agent itself, the AgentScapeRuntimeServices part has direct ac-
cess to the AgentScape API. It works directly on the API and does not need to
pass its calls through the agent architecture.

4.3 Agent communication

In both AgentScape and Jason, agents have names. AgentScape’s naming system
allows mapping names to unique agent handles, which is used by Jason agents
to map their Jason name to one of their handles on agent startup. This allows
Jason agents to send and receive messages to both their Jason agent names and
AgentScape handles.

Jason supports broadcasting to all Jason agents. To this end, each Jason
agent stores its handle along with a reserved string in the AgentScape lookup

service, identifying itself as a Jason agent. A special function in AgentScapeAg-
Arch finds all entries of the reserved string and sends an AgentScape multicast to
all AgentScape handles stored along with it, effectively broadcasting a message
to all Jason agents in the system. It is also possible to broadcast messages to
all agents, i.e., Jason and AgentScape agents. Sending messages between Jason
agents and other (regular) AgentScape agents is also supported.

4.4 Web Service Access

In addition to its other functionality, AgentScape also supports Web service
access to its agents. The AgentScapeAgArch has a callWebService method for
calling Web services, which needs to be given the locations of the WSDL file and
method stubs. The reasoning cycle can access this function by using a custom
internal action RunWebService, which in turn calls the callWebService method
in the AgentScapeAgArch.

An alternative design would have been to allow agents to directly use a Java
Web service framework, such as Axis. However, it was decided to have agents
contact Web services through the platform, for security purposes, as it allows
monitoring of agents and their resource consumption. In AgentScape, agents are
sandboxed. Providing unrestricted and unmonitored Web service access violates
this design principle.

To use a Web service in Jason:

1. A WSDL file is used to create Web service stubs which can be called by
agents. These stubs are created by a custom parser known as the WS-stubber.

2. As a Jason agent runs, the Jason BDI engine executes the code for web
service execution. A sample AgentSpeak(L) plan can be seen in Figure 4.
Once this plan is executed, the custom internal action RunWebService for
Web service access is called.

3. This internal action passes the call on to the infrastructure; in Jason, calls
from an internal action to the middleware are always given to the infrastruc-
ture to be executed. In this example, the AgentScapeAgArch has a call-
WebService function for handling Web services. This function is called next.

4. The AgentScapeAgArch accesses the stubs which were created at compile-
time. This is possible because the AgentScapeAgArch is registered with
AgentScape as an agent. It binds to these stubs, to be ready to call the
service.

5. Next, the AgentScapeAgArch makes the call to the Web service. The called
stub transports the call to AgentScape’s Web service gateway, which func-
tions as a proxy. This allows an AgentScape administrator control and mon-
itor all agent Web service use.

6. The Web service gateway receives the results of its call and returns them to
the stub, which hands them back to the AgentScapeAgArch.

7. Finally, the AgentScapeAgArch returns the results to the internal action.
These are returned to Jason’s reasoning engine, without additional overhead
for Jason.

Note that the syntax for the use of the Web service internal action is no
different for Jason developers than the use of regular internal actions. The calls
necessary to use a service translate from Jason to AgentScape and back. In the
body of a plan, the internal action is called. This, in turn, calls a function in the
AgentScapeAgArch. The call is handed off and when the results return, they are
parsed into Jason variables for use in the BDI reasoning engine.

ownCurrency ("EUR") .
foreignCurrency ("USD") .

+!convertCurrency :
ownCurrency (Currencyl) & foreignCurrency(
Currency?2)
<_
.println(
"Calling currency convertor service.");
as.RunWebService(
CurrencyConvertor.wsdl,
[Currencyl, Currency2Ratio],
Ratio
)5
.println("Call successful. Conversion ratio:");
.println(Ratio).

Fig. 4. This Jason plan checks the ratio between two currencies, using a web service

5 Scenario

This section details a scenario for negotiating Jason agents in an (semi-)open,
insecure environment. Managing large-scale, decentralized systems in the energy
market is a challenge [16]. Electricity is generated by many sources, including
non-traditional sources such as private solar cells or wind turbines. Predictability
of output to the power grid is becoming more difficult, possibly jeopardizing a
reliable power supply, if not taken into account. A potential solution is decentral-
ized markets in which autonomous agents regulate the power used by electrical
appliances, small power sources or groups of the previous. The agents operate
without human intervention, on behalf of their human owners. These human
owners are both consumers and producers: selling power if their solar cells and
wind turbines produce more power than their appliances use, or buying extra
power if their usage is greater than their production. To enable continuous auto-
matic negotiation, agents from both power consumers and providers run on an

AgentScape location, allowing them to either buy or sell the power their owner
needs. The micro payments for these transactions are performed through a Web
service.

As any party, consumer or provider, can send agents to an AgentScape lo-
cation, the environment is completely open. In this setting, security is a major
issue: once agents are exploitable and vulnerable to attacks, the affordable power
supply of their owners cannot be guaranteed. In general, autonomous agents face
two major threats: malicious hosts and malicious agents [9]. Malicious agents at-
tempt to damage the operation of the platform or the agents running on it. As
the discussed system is open to all parties, malicious agents are a realistic threat
and must be countered. By default, AgentScape sandboxes all agents [24], pre-
venting them from taking certain, possibly dangerous, actions. Although this
limits the actions available to all agents, this is not considered a problem: the
system is designed for inter-agent communication through negotiation. For ex-
ample, sandboxed agents are denied access to the local file system. However, as
the main goal of these agents is inter-agent negotiation, which is not limited by
sandboxing, limiting the agents in this way does not damage this goal.

The second threat faced by agents is that of malicious hosts. In this scenario,
the AgentScape middleware is considered to be trusted. This means the malicious
host problem is not applicable.

To deal with the openness and insecurity of the environment, agent com-
munication is anonymized. To perform their tasks agents need access to remote
services. Several negotiation services are hosted by the platform. These aspects
are discussed in greater detail below.

5.1 Agent anonymity

Agents, equipped with the usage profile of their owners, derive predicted energy
needs of their owners and negotiate with other agents to get the resources they
need. This communication must be done anonymously, for various reasons.

Primarily, anonymous communication protects the privacy of an agent’s owner,
to ensure his identity remains hidden. In addition, it prevents power suppliers
from forming cartels and performing price fixing against a certain consumer: if
the identity of a consumer is not known and (s)he uses a different identity for
each negotiation with suppliers, they cannot form a cartel against him. Simply
changing agent will not achieve this, a more complex anonymity plan is needed.

Finally, buyer profiling becomes impossible: using different identities for each
negotiation prevents providers from creating a profile about a consumer. Having
two different negotiations with a single supplier, using two different identities,
means the supplier cannot create a profile about the consumer as it is not known
if both negotiations were with the same agent. For these three reasons, commu-
nication within the open, insecure location must be done anonymously.

In the system, this anonymity is achieved by AgentScape’s anonymity ser-
vice [28]. It hides both sender and receiver identity, while also hiding the link
between these agents, as this might also provide privacy information to outside

observers. This is achieved by using AgentScape handles, which agents can re-
quest as many as needed and cannot be traced back to the original agent: an
agent sends a message to the anonymity service, together with the handle of the
intended recipient. The anonymity service creates a new handle for the sender
and forwards the message with the new handle as sender. If a response arrives,
the handle is mapped to its original handle and sent to the correct recipient.

As the sender does not know which agent is behind the receiving handle, both
sender and receiver identity are hidden. In addition, as these handles cannot be
traced back to their original agent, they also achieve link anonymity as it cannot
be observed which two agents communicated.

5.2 Web service access

Another central concept in this scenario is that of Web service access. Making
micro payments requires access to the external world, which is achieved using
an external Web service. These micro payments are used to pay for the resource
transactions.

Using AgentScape’s Web service gateway for this purpose ensures payments
meet the platform’s security policy, as they have to pass a check before being
accepted and forwarded to the Web service. It also allows monitoring of the
content and number of transactions by the platform [21].

5.3 Hosted services

To provide support for negotiation, the platform hosts various mediator [18] and
auction [13] services to connected agents. Any agent that trusts the platform can
accept these services as trusted third parties to mediate in their negotiations or
to auction resources on their behalf.

6 Conclusions and Future Work

This paper presents a mechanism for secure deployment of BDI-based multi agent
systems in open, insecure, dynamic, heterogeneous environments. In particular,
agents written in the BDI system Jason can be deployed in such environments
using the AgentScape multi-agent middleware. The resulting integrated system
has been illustrated for BDI agents in a (semi-)open, insecure system, negotiating
for resources on behalf of their owners in the context of a virtual energy market.

The functionality described in this paper is thus available to Jason agents run-
ning on AgentScape middleware. It includes Web service access and anonymized
communications for agents. Also, the platform offers services for use by agents,
such as directory, configuration, auction and negotiation services.

This extends the functionality provided by the other middleware platforms
that currently support Jason. Heterogeneity and anonymity in inter-agent com-
munication, are needed in many large scale open environments as illustrated
above for management of energy markets.

Current work focuses on (1) further extension of Jason agents’ functionality

including additional functionality provided by AgentScape, in particular agent
mobility and simplified agent startup, and (2) support for other BDI languages,
in particular GOAL [15].

Acknowledgments

This project is partially supported by the NLnet Foundation http://www.nlnet.
nl, partially supported by the ACCESS project, http://www.iids.org/access,
part of the NWO TOKEN program and partially supported by the VU-star project.

References

1.

10.

11.

F. Bellifemine, A. Poggi, and G. Rimassa. JADE — A FIPA-compliant agent
framework. In Proceedings of the 4th International Conference and Exhibition
on The Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM’99), pages 97-108, London, UK, Apr. 1999.

F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems
with JADE. John Wiley & Sons, NJ, Apr. 2007.

R. H. Bordini, J. F. Hiibner, and R. Vieira. Jason and the golden fleece of agent-
oriented programming. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-
Seghrouchni, editors, Multi- Agent Programming, volume 15 of Multiagent Systems,
Artificial Societies, and Simulated Organizations, pages 3—37. Springer, 2005.

R. H. Bordini, M. Wooldridge, and J. F. Hiibner. Programming Multi-Agent Sys-
tems in AgentSpeak using Jason. Wiley Series in Agent Technology. John Wiley &
Sons, 2007.

M. Bratman. Intention, plans, and practical reason. Harvard University Press
Cambridge, Mass, 1987.

J. Cucurull, B. J. Overeinder, M. A. Oey, J. Borrell, and F. M. T. Brazier. Ab-
stract software migration architecture towards agent middleware interoperability.
In Proceedings of the 2nd Int’l Multiconference on Computer Science and Informa-
tion Technology (IMCSIT), volume 2, pages 27-37, October 2007. ISSN 1896-7094.
M. Dastani and J.-J. C. Meyer. A Practical Agent Programming Language. Pro-
ceedings of the fifth International Workshop on Programming Multi-agent Systems
(ProMAS 07), 2007.

E. E.-D. El-Akehal and J. Padget. Pan-supplier stock control in a virtual ware-
house. In N. e. Berger, Burg, editor, Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008)- Industry and Applications Track, pages
11-18, 2008.

W. M. Farmer, J. D. Guttman, and V. Swarup. Security for mobile agents: Is-
sues and requirements. In Proc. 19th NIST-NCSC National Information Systems
Security Conference, pages 591-597, 1996.

I. T. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn: Why grid and
agents need each other. In AAMAS, pages 8-15. IEEE Computer Society, 2004.
A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. Software
Engineering, IEEE Transactions on, 24(5):342-361, 1998.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Georgeff and F. Ingrand. Decision-making in an embedded reasoning system.
Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence (IJCAI-89), pages 972-978, 1989.

P. Gradwell, M. A. Oey, R. J. Timmer, F. M. T. Brazier, and J. Padget. Engineering
large-scale distributed auctions. In Proceedings of the Seventh Int. Conference on
Autonomous Agents and Multiagent Systems (AAMAS). ACM, May 2008.

V. Gunupudi and S. Tate. SAgent: A security framework for JADE. In Proceedings
of the fifth international joint conference on Autonomous agents and multiagent
systems, pages 1116-1118. ACM New York, NY, USA, 2006.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent
programming with declarative goals. In C. Castelfranchi and Y. Lespérance, ed-
itors, ATAL, volume 1986 of Lecture Notes in Computer Science, pages 228-243.
Springer, 2000.

G. James, W. Peng, and K. Deng. Managing Household Wind-Energy Generation.
IEEE Intelligent Systems, 23(5):9-12, 2008.

N. Lhuillier, M. Tomaiuolo, and G. Vitaglione. Security in Multi-Agent Systems:
JADE-S goes Distributed. Special issue on JADE of the TILAB Journal EXP-in
search of innovation, 2003.

D. G. A. Mobach. Agent-Based Mediated Service Negotiation. PhD thesis, Com-
puter Science Department, Vrije Universiteit Amsterdam, May 2007.

B. J. Overeinder and F. M. T. Brazier. Scalable middleware environment for agent-
based Internet applications. In Applied Parallel Computing, volume 3732 of Lecture
Notes in Computer Science, pages 675-679. Springer, Berlin, 2006.

B. J. Overeinder, M. A. Oey, R. J. Timmer, R. van Schouwen, E. Rozendaal,
and F. M. T. Brazier. Design of a secure and decentralized location service for
agent platforms. In Proceedings of the Sizth International Workshop on Agents
and Peer-to-Peer Computing (AP2PC 2007), May 2007.

B. J. Overeinder, P. D. Verkaik, and F. M. T. Brazier. Web service access manage-
ment for integration with agent systems. In Proceedings of the 23rd Annual ACM
Symposium on Applied Computing (SAC). ACM, March 2008.

S. Paurobally, V. A. M. Tamma, and M. Wooldridge. A framework for web service
negotiation. TAAS, 2(4), 2007.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning en-
gine. Multi-Agent Programming: Languages, Platforms and Applications. Springer,
Berlin, 2005.

T. B. Quillinan, M. Warnier, M. A. Oey, R. J. Timmer, and F. M. T. Brazier.
Enforcing security in the agentscape middleware. In Proceedings of the 1st Inter-
national Workshop on Middleware Security (MidSec). ACM, December 2008.
A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
Agents Breaking Away (LNAI 1038), 1996.

R. C. van het Schip. Integrating Jason into AgentScape - Joining BDI-theory
with Agent Technology practise. Master’s thesis, Vrije Universiteit Amsterdam,
October 2008. MSc thesis report, Supervisors: dr. Martijn Warnier and prof. dr.
Frances Brazier.

S. van Splunter, F. M. T. Brazier, J. Padget, and O. Rana. Dynamic service recon-
figuration and enactment using an open matching architecure. In Proceedings of
the International Conference on Agents and Artificial Intelligence, Porto, Portugal,
January 2009.

M. Warnier and F. M. T. Brazier. Organized anonymous agents. In the Proceedings
of The Third International Symposium on Information Assurance and Security
(IAS’07). IEEE, August 2007.

29. N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and F. M. T. Brazier. Sup-
porting Internet-scale multi-agent systems. Data & Knowledge Engineering, 41(2-
3):229-245, 2002.

