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Abstract

As the focus of the energy transition within cities worldwide moves towards local commu-
nities and neighbourhoods, the need for insights in the dynamics of local electricity demand
increases. Detailed local electricity demand information is, however, often not available.
This paper proposes a statistical data-driven method to model local electricity demand for
mixed urban areas, using a combination of other openly available datasets. Such datasets
however are mutually incompatible without further conversion. The proposed method over-
comes this problem. Linear regression is used to combine these different datasets, whereby
the regression coefficients have the meaning of scaling factors for different types of elec-
tricity consumers (households, offices, shops, etc.). The method is calibrated and validated
using respectively a training and a test dataset of Dutch municipalities, yielding R-squared
values for most consumer types between 61% and 98%. The application of the method for
local electricity demand modelling is illustrated for three Dutch municipalities with different
consumer compositions.
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1 Introduction

Understanding the dynamics of local electricity demand is important to support the transition
to renewable, distributed generation in urban areas [1]. For this purpose, a number of knowledge
gaps needs to be resolved, including the current lack of electricity demand data and modelling
tools for the local level [2, 3]. Existing load forecasting approaches typically cover large areas
(e.g., the entire territory serviced by a single utility company) and are therefore too coarse to
provide insights in spatial demand variations at the local scale [4].

New urban and building energy models are currently under development, however their ap-
plication to real areas is restrained by the limited amount of detailed openly available energy
demand data [5, 6, 7, 8]. While residential energy demand data are available to some extent,
service sector and industrial data are often not (openly) available at all. As a result, service and
industrial sectors are not included in most modelling studies, although real urban areas are a mix
of residential, service and industrial consumers. The few studies which include mixed electricity
consumers, are based on proprietary data (e.g., [9]).

This paper proposes a statistical data-driven method that can be used to estimate local urban
demand profiles for mixed residential and services areas1, for which currently no demand profiles
are available. The method relies on a combination of energy and non-energy related data which
are generally publicly available, and is implemented for the Netherlands.

1Industrial consumers are left out of scope as they require a case-by-case instead of a statistical approach due
to their large size.
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Figure 1: Flow chart for the statistical data-driven model. The model combines three data sources and
generates scaling factors βi. These scaling factors can be used to simulate electricity demand profiles of
any urban area of choice for which the local number of consumers of different types is available.

2 Methods

The proposed method combines three datasets, each providing details in a different dimension.
The first dataset contains reference demand profiles for different consumer types, which provide
detailed temporal information. The second dataset contains local composition data for different
consumer types, providing detailed spatial information. The third dataset contains aggregated
local annual electricity demand data, which is used to link the two other datasets.

2.1 Datasets

The data and sources used in the case study are outlined next. Numeric values for the reference
year 2014 are used.

� Dataset 1: Reference demand profiles. Both residential and service sector consumers
are modelled. For the residential sector, the reference Dutch household demand profile is
used [10]. For the service sector, adapted profiles from the United States Department of
Energy (U.S. DOE) commercial building reference models are used [11], as the U.S. DOE
provides one of the most complete, openly available datasets of energy demand in service
sector buildings. The U.S. DOE profiles can be adapted for other regions, in this case for
the Netherlands, as described in [12].

� Dataset 2: Local consumer composition. The data format of the local consumer
composition is the number of residential and different service sector consumers in the area
of interest. For the Netherlands, data on municipality-level consumer composition are
available from Statistics Netherlands [13].

� Dataset 3: Annual local electricity demand. Annual electricity demand data for
Dutch municipalities are used. For each municipality, the data for different types of service
sector and residential consumers are available from the Dutch Ministry of Infrastructure
and Water Management [14].
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2.2 Statistical Data-Driven Model

The different datasets that are available come from different sources and therefore refer to dif-
ferent “bases”. This is in particular the case for the datasets used in this paper. The reference
demand profiles (Dataset 1) pertain to reference buildings (data expressed in kWh/h per building)
[10, 11, 12]. The consumer composition data (Dataset 2) pertain to households, businesses and
services (collectively termed “consumers”) registered with the Dutch government (data expressed
in number of administrative entities in a given municipality) [13]. The annual local electricity
demand (Dataset 3) pertains to electricity demand by economic subsectors (e.g., healthcare) in
the Netherlands (data expressed in MWh/year per subsector) [14].

This paper proposes a data-driven method which (1) overcomes such base differences, and
(2) enables modelling of electricity demand in areas for which only limited data are available.
The method relies on linear regression, whereby the regression coefficients for each electricity
consumer have the meaning of scaling factors, thus making the combination of available datasets
possible, despite their base differences. The method is shown in Fig. 1 (left block). The regression
is given by:

Ei,j = βi · ni,j ∗
8760∑
t=1

Pi(t) (1)

where,

Ei,j : Annual electricity demand of consumer type i in area j

(Dataset 3)

βi : Scaling factor for consumer type i

ni,j : Number of consumers of type i in area j (Dataset 2)

Pi(t) : Hourly reference demand profile for consumer type i

(summed over 8760 hours for one year) (Dataset 1)

2.3 Calibration and Validation

The linear regression model is calibrated and validated using data for 383 municipalities in the
Netherlands (Datasets 2 and 3). Municipalities are randomly assigned to a training and a test
dataset, such that the training dataset contains 268 (70%), and the test dataset 115 (30%)
municipalities. The coefficients βi are estimated based on the training dataset, their predictive
power is validated using the test dataset. The R-squared is used as fitness metric.

2.4 Urban Electricity Demand Simulation

Once the scaling factors are calculated and validated, they can be used to model electricity
demand in any area of interest, if data with the same base as used to calculate the scaling factors
is available for that area. In this paper, the base is the number of households, businesses and
services (termed “consumers”) registered with the government. Such data is generally available
for many areas from local governments or open databases such as [15]. Using scaling factors and
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Figure 2: Scatter plots for six consumer types (or categories) for 115 Dutch municipalities (test dataset).
Each plot shows how well the modelled annual electricity demand matches the measured electricity
demand. R2 is used as fitness metric, and reported for each consumer type (or category).

the local number of consumers, the local electricity demand for area a is given by the following
equation. (This step is also shown in Fig. 1 in the right block.)

Ea(t) =

N∑
i=1

βi · ni,a · Pi(t) (2)

where,

Ea(t) : Energy demand profile for area a with resolution t

N : Total number of different consumer types

ni,a : Number of consumers of type i in area a

In this paper, three municipalities from the test dataset are used as areas of interest to
illustrate the application of the proposed method. For these municipalities local demand profiles
and local relative annual consumer demand are modelled.

3 Results and Discussion

Results of the linear regression method yielding scaling factors are shown and discussed first,
followed by results of electricity demand simulation for three municipalities which are used to
illustrate the application of the proposed method.
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Table 1: Linear regression scaling coefficients and R2-values.

Consumer Type Scaling Factor R2 Training Set R2 Test Set

Households 0.74 0.97 0.98

Cafes & Restaurants 0.25
0.81 0.61

Hotels 0.002

Retail & Supermarkets 0.06
0.87 0.93

Warehouses 0.05

Offices 0.10 0.91 0.87

Schools 0.12 0.76 0.71

Hospitals 0.01 0.43 0.51

Total (-) 0.97 0.99

3.1 Statistical Data-Driven Model

The scaling factors βi for different consumer types obtained using the proposed linear regression
method are summarised in Table 1, alongside with R2-values based on municipality-level training
and test datasets. Figure 2 shows the scatter plots for each consumer type for the test dataset.
(Note that due to differences in consumer classification in different datasets, some consumer
types are grouped into consumer “categories”, e.g., consumer types “Cafes and Restaurants”,
and “Hotels” are grouped into “Cafes, Restaurants and Hotels”.)

The scaling factors in Table 1 are all less than 1 due to base differences between the datasets
used. The dataset used for the number of consumers in each area has administrative registrations
as base (Dataset 2), while the reference demand profiles have reference buildings as base (Dataset
1). A single building can house multiple administrative units, for instance, a single office building
can house 10 different companies, yielding a scaling factor of 0.1. Furthermore, a relatively
large reference building can be used to simulate electricity use in smaller administrative units.
For instance, the electricity consumer type “Hotels”2 includes small lodging rooms and bed-
and-breakfasts, yielding a very low scaling factor. Similarly, for instance, “Schools” include all
administrative entities which provide education (schools, universities, but also small education
and training centres), thus also yielding a relatively small scaling factor.

R2-values (Table 1 and Fig. 2) represent the share of variability explained by the regression
model. Most obtained R2-values vary between 61% and 98%, with lower-end values for broader
and more diverse categories (e.g., cafes, restaurants and hotels). Hospitals have a relatively low
R2-value of 51% (for the test set). Hospital electricity demand is known to be challenging to
model [16].

Obtained R2-values are compared to values in literature. Fonseca and Schlueter report
building-level electricity model errors of 4% to 66%, and area-level electricity model errors of
1% to 19% [9]. Mastrucci et al. used linear regression to downscale electricity demand from
postcode-level to building level, obtaining an R2-value of 81.7% [17]. The method proposed in
this paper thus yields a regression model with a predicted variability comparable to, or higher
than, that of other energy models in literature.

2The names of the consumer types refer to the reference buildings that are used to model the electricity demand
of the given consumer type [11].
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Figure 3: Modelled electricity demand profiles for three municipalities from the test dataset for one week
(February 24th until March 2nd, 2014).

3.2 Urban Electricity Demand Simulation

Detailed local electricity demand of mixed areas can be modelled using the scaling factors cal-
culated and validated in the statistical data-driven model. Three Dutch municipalities from the
test dataset are used as illustration. Municipality 1 (Doesburg) is predominantly residential,
Municipality 2 (Nieuwegein) has a large number of offices, and Municipality 3 (Texel) is mixed,
with a relatively high number of cafes, restaurants and hotels.

Table 2 shows the unscaled number of consumers of different types in the three municipalities.
This is an example of Dataset 4 in Fig. 1. Note for instance the high number of the “Hotel” type
consumers in Municipality 3. This municipality is a popular holiday area on one of the Wadden
Sea islands, and has a high number of small-scale holiday rentals. The high number of “Hotels”
refers to these small-scale holiday rentals, and therefore is scaled (by a factor 0.002, see Table 1)
to represent the real consumer mix and scale. The scaled number of consumers for the three
municipalities is shown in Table 3. Note that after scaling, the number of some consumer types
is less than 1, in particular “Hotels” and “Hospitals”. This means that the electricity demand
of respectively lodging and healthcare in the given municipality can be modelled by a fraction of
the electricity demand of the reference building available in [11] and adapted for the Netherlands
as described in [12].

Local electricity demand profiles can be modelled using the scaled consumer number data
from Table 3 and hourly reference building electricity demand profiles from [11] (adapted for the
Netherlands as described in [12]), implementing the approach shown in Fig. 1. The resulting
profiles are shown in Fig. 3 for one week (February 24th until March 2nd, 2014). Note that
Municipality 1 as a whole has an electricity demand profile which resembles an average household
profile, with an evening demand peak. Municipalities 2 and 3 have relatively flat demand profiles
during the day on weekdays, and a relatively low, double-peaked profile during the weekend. The
double peak corresponds to lunch and dinner times, with increased demand due to cooking and
eating activities both in the households and in cafes, restaurants and hotels.

3.3 Model Application for Local Energy Transition

Improved insights in local electricity demand profiles can help integrate distributed renewable
resources in local power systems at the distribution level. The synergies and differences in timing
between electricity demand on the one hand and solar and wind generation on the other hand,
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Table 2: Unscaled number of consumers of different types in three reference municipalities from the test
data set.

Consumer Type
Municipality 1:

Residential
Municipality 2:

Business
Municipality 3:

Mixed

Households 5167 27507 6405

Cafes & Restaurants 17 104 197

Hotels 0 3 3972

Retail & Supermarkets 14 445 222

Warehouses 272 1189 562

Offices 14 712 99

Schools 1 85 15

Hospitals 3 43 26

Table 3: Scaled number of consumers of different types in three municipalities from the test data set.

Consumer Type
Municipality 1:

Residential
Municipality 2:

Business
Municipality 3:

Mixed

Households 3800 20231 4711

Cafes & Restaurants 4 26 49

Hotels 0 0.006 8

Retail & Supermarkets 1 28 14

Warehouses 13 55 26

Offices 1 70 10

Schools 0.1 10 2

Hospitals 0.03 0.5 0.3

determine which measures (e.g., storage, interconnection, demand response) are necessary to
support local distributed renewable resource integration. For instance, the demand profiles of
Municipalities 2 and 3 have a plateau during the day, and thus have a better correspondence with
day-peaking solar generation than Municipality 1, for which demand peaks during the evening.

Improved understanding of the breakdown of electricity demand across consumer types can
help design targeted energy efficiency and demand response programmes. Fig. 4 shows the rela-
tive annual electricity demand of different consumer types in the three modelled municipalities.
In Municipality 1, 67% of the modelled annual electricity demand is used by households. In
Municipalities 2 and 3 a much smaller share, respectively 34% and 27%, of the modelled annual
electricity demand is used by households. In Municipality 2, offices use the most electricity (45%).
In Municipality 3, cafes, restaurants and hotels are the largest consumer group (27%). These
results indicate that in the three municipalities different consumer groups should be targeted for
local demand response and energy efficiency campaigns to achieve the highest impact.

7



Figure 4: Modelled relative annual electricity demand by consumer type in three municipalities from the
test dataset.

4 Conclusion

This paper proposes and implements a statistical data-driven method that can be used to model
local electricity demand in mixed residential and service sector areas for which currently no
detailed spatio-temporal demand data are available. The proposed method is based on linear
regression, whereby the regression coefficients have the meaning of scaling factors, thus making
the combination of openly available datasets possible, despite their base differences.

The linear regression model is calibrated and validated using data of Dutch municipalities.
The results yield R2-values for scaling factors between 61% to 98% for all consumer types except
for hospitals, showing the validity of the method for most consumers types.

Next, the use of scaling factors for modelling of local electricity demand is illustrated for
three municipalities with different consumer compositions. The resulting detailed local electric-
ity demand profiles and relative local electricity demand breakdown by consumer type provide
insights which can help and guide local distributed renewable resource integration and energy
efficiency initiatives. This application shows how the proposed approach can be used as a tool
by researchers and local governments for local energy transition projects.
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