
AN INTELLIGENT CLOUD RESOURCE ALLOCATION SERVICE
Agent-based automated Cloud resource allocation using micro-agreements.

Kassidy Clark, Martijn Warnier and Frances M.T. Brazier
Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Delft, The Netherlands

{k.p.clark, m.e.warnier, f.m.brazier}@tudelft.nl

Keywords: cloud computing, service level agreements, agent technology, automated negotiation, micro-agreements

Abstract: The Cloud refers to hardware and software resources available across the Internet. The number of competing
Cloud Service Providers (CSP) continues to increase as companies outsource their computing infrastructure to
the Cloud. In this environment, consumers face several challenges, including finding the least expensive Cloud
service configuration, migration between CSPs and dynamically changing resource offerings. To assist con-
sumers in this environment, this paper proposes an Intelligent Cloud Resource Allocation Service (ICRAS).
This service maintains an overview of current CSP resources offerings and evaluates them to find the most
appropriate configuration given a consumer’s preferences. The service then negotiates a short term micro ser-
vice agreement with the CSP and monitors the service for any violations. Finally, the service can assist in the
migration of the consumer’s data between CSPs.

1 INTRODUCTION

The Cloud refers to hardware and software resources
available across the Internet (Armbrust et al., 2010).
Companies that offer these resources are referred to
as Cloud Service Providers (CSP). Cloud services can
be roughly categorized as Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-
as-a-Service (SaaS). This categorization is based on
the complexity of the service, from raw compute re-
sources, such as storage or processing power, to re-
fined software services, such as databases or other ap-
plications. This paper focusses mainly on the first of
these categories: IaaS.

The Cloud computing model allows end users
to rent computing infrastructure as needed, rather
than requiring them to purchase their own resources.
Moreover, consumers can increase or decrease the
size of their Cloud resources in a straightforward
and timely manner, depending on their computing re-
quirements. Consumers use these services following
a pay-as-you-go model, only paying for the specific
amount of time or level of service used.

Much research into efficient use of Cloud re-
sources focusses on increasing utility of the CSP.
For instance, techniques have been proposed for
load-balancing techniques aimed at reducing energy
costs (Baliga et al., 2011) or dynamic pricing models
that maximize revenue (Pueschel et al., 2009). In con-

trast, this paper proposes a service to maximize utility
from the perspective of the consumer. With this ser-
vice, a consumer can find the most appropriate bal-
ance between low cost and high quality.

The number of CSPs offering similar services on
the market continues to grow. This increased level
of providers allows consumers to pick and choose
between options, based on price, Quality of Service
(QoS), reputation and location. The values of some
selection options are also constantly changing. For
instance, in addition to set prices, some CSPs offer
dynamic pricing (e.g. Amazon Web Services spot
pricing). Dynamic pricing allows the price of cer-
tain resources to change to immediately reflect un-
derlying factors, such as Cloud utilization and con-
sumer demand (Pueschel et al., 2009, Anandasivam
and Premm, 2009).

In this environment, a consumer is faced with sev-
eral challenges. First, to obtain the desired initial con-
figuration of Cloud resources, a consumer must eval-
uate prices of all available CSPs. The task of find-
ing this configuration is further complicated as more
CSPs implement dynamic pricing. When a consumer
chooses the configuration that is currently the most
appropriate, a better configuration may become avail-
able soon thereafter. Therefore, a consumer must
periodically reevaluate configurations at all available
CSPs. If a consumer chooses to move from his or her
current CSP to a different CSP with a more suitable

configuration, the consumer is then faced with the
challenge of migration. Due to inoperability of CSPs
and the tendency towards vendor lock-in, changing
CSPs is not a trivial task.

To assits a consumer with these challenges, this
paper introduces an Intelligent Cloud Resource Al-
location Service (ICRAS). ICRAS supports the con-
sumer with 1) discovering all available resource con-
figurations, 2) choosing the desired configuration, 3)
negotiating a service agreement with the CSP, 4) mon-
itoring the service agreement for violations and 5) as-
sisting in the migration of services between CSPs.

ICRAS aggregates information describing the
available services from multiple CSPs, including cur-
rent price, availability, Quality of Service guarantees,
location and reputation. When a consumer requires
resources, it contacts ICRAS with a description of the
computing needs. ICRAS then matches the resource
request to the most appropriate configuration of Cloud
resources from the CSPs. ICRAS facilitates the ne-
gotiation of the necessary Service Level Agreements
(SLA) with the CSPs on behalf of the consumer and
assists in the migration process.

ICRAS then monitors the services during the life-
time of the SLA to ensure that there are no agreement
violations. If violations are detected, corrective action
can be taken. Furthermore, ICRAS continues to eval-
uate the available CSP resources and their prices and
can recommend new configurations when they benefit
the consumer. By negotiating micro-SLAs (e.g. one
hour), ICRAS is able to respond to newer, and hope-
fully better, configurations.

ICRAS can be used by a consumer for two dif-
ferent stages: initial migration to the Cloud and mi-
gration between CSPs. After negotiating the initial
service agreement, ICRAS constantly monitors for
newly available configurations. If a better one is
found, the consumer is notified and given the option
to migrate to the new CSP.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the core concepts used in automated
negotiation. The ICRAS architecture is detailed in
Section 3. The ICRAS protocol is explained with a
use-case in Section 4. In Section 6, other automated
service negotiation architectures are compared. Fi-
nally, the implications of this research are discussed
in Section 8.

2 AUTOMATED NEGOTIATION

Negotiation is the process by which one or more par-
ties, with possibly conflicting goals, together search
for a mutually acceptable agreement (Jennings et al.,

2001). The negotiation process consists of propos-
als, counter-proposals, trade-offs and concessions, as
each party attempts to maximize its own goals. A
common utility function for consumers in the context
of Cloud computing is to reduce costs while achiev-
ing the desired resources and maintaining reasonable
Quality of Service (QoS)

Much research has been done in recent years on
the area of automating the negotiation process using
intelligent software agents (Koritarov, 2004, Jonker
and Treur, 2001, Jennings et al., 2001, Brazier et al.,
2002, Ouelhadj et al., 2005). In this paper, an agent
is be defined as a piece of software that is capable of
autonomous action (Jennings and Wooldridge, 1998).

In the marketplace, agents represent the individual
parties of a negotiation. Given a user’s preferences
and a negotiation strategy, agents are able to com-
municate with other agents to autonomously negoti-
ate agreements. Furthermore, agents can learn from
past social interactions and improve their response
to changes in the environment or even take proactive
measures when opportunity arises. The agent model
supports message passing and autonomous decision
making useful for automated negotiation.

2.1 Service Level Agreements

The product of a successful negotiation session is
an agreement between the parties that stipulates the
terms and conditions of the service. This agreement
is referred to as Service Level Agreement (SLA).
An SLA contains the names of the parties involved,
the services to be provided and the QoS guaran-
tees that apply. Several standards have been pro-
posed for formalizing the negotiation and creation
of the SLA document, including the Web Service
Agreement (WSAG) (Andrieux et al., 2007) and Web
Service Agreement Negotiation (WSAN) (Waldrich
et al., 2011) specifications.

The WSAG specification describes the steps taken
during SLA negotiation, as well as how SLAs are rep-
resented. The objects used in negotiation are 1) Tem-
plates, 2) (Counter-) offers and 3) Agreements. The
basic structure of these objects is shown in Figure 1.
Templates are used by service providers to describe
the services they offer, including specific configura-
tions of price, QoS guarantees and so forth. These
services are listed in the template with constraints
such as ExacltyOne and OneOrMore. Upon request,
a service provider sends his or her templates to a ser-
vice consumer. Based on the templates, the consumer
makes one or more Offers. An offer is an instanti-
ated template. This occurs when a consumer chooses
a specific configuration of services from a template

C P

C P

C P

Templates

Offers
Counter-offers

Agreement

Figure 1: WSAN protocol and SLA specification.

along with their associated guarantees. If both par-
ties accept and offer, an Agreement is created. The fi-
nal agreement lists the parties involved, the exact ser-
vices being provisioned and the specific guarantees
(QoS) that apply. If the offer is not accepted, either
a counter-offer is created with a new configuration or
the negotiation session is terminated.

2.2 Micro Agreements

Agreements specify the terms and conditions of a ser-
vice for a defined period of time. For instance, home-
owners typically make a long-term agreement with
the power company for a period of one year or more.
The agreement typically stipulates that the home-
owner may not migrate to another energy provider
until the end of the period. This fixed pricing period
benefits the provider two fold. First, it provides a re-
liable income source for the period. Second, it im-
proves the accuracy of the usage prediction used for
buying or generating electricity. Energy providers can
make more accurate assumptions about energy con-
sumption if their customers cannot suddenly move to
a different provider.

The disadvantage of long-term agreements is that
the customer cannot react to changes in the market,
such as new providers or cheaper products. In prac-
tice, prices are constantly changing due to the con-
stant balance of supply and demand. However, these
changes are not immediately reflected in the price the
customer pays, due to long-term agreements. Further-
more, due to fixed pricing, customers have no incen-
tive to shape their demand to conform to supply. This
results in lowered market efficiency.

An alternative to a long-term agreement is a
micro-agreement. A micro-agreement is a short-term
agreement with a period on the scale of seconds,
hours or days. By keeping the period of fixed-pricing
short, consumers are able to benefit from dynamic
pricing, also referred to as real-time pricing. Using
micro-agreements, consumers are able to shape their
demand on an hourly basis, in response to changes in
price. This approach increases market efficiency, low-
ers price and reduces the amount of unconsumed (e.g.

wasted) resources. Dynamic pricing has been inves-
tigated in the area of energy markets with promising
results (Borenstein, 2005).

3 ICRAS ARCHITECTURE

The Intelligent Cloud Resource Allocation Service
(ICRAS) requires an underlying architecture, consist-
ing of three major components: 1) a consumer, 2) a
CSP and 3) an ICRAS agent. These elements rep-
resent the three roles in the marketplace, which may
contain multiple instances of each. Furthermore, this
architecture provides the mechanisms and protocols
that enable these parties to communicate with one an-
other and autonomously negotiate micro-SLAs. SLAs
are negotiated and created following the WSAN spec-
ification. This architecture is illustrated in Figure 2.

3.1 Consumer

Each consumer interacts directly with an ICRAS
agent. A consumer specifies his or her requirements
in an SLA offer. This document allows a consumer to
specify 1) hard and 2) soft requirements, 3) priorities,
4) ranges of options, and 5) dependencies between re-
quirements. For instance, a consumer requires 10 vir-
tual servers with a combined CPU power of 20 GHz
and a combined storage of 2 TB. Using the SLA nota-
tion, a consumer expresses that the CPU and storage
requirements are strict, however, for a reduced price,
the actual number or servers can change.

In addition to providing the initial resource re-
quirements, a consumer is also responsible for up-
dating these requirements. If resource requirements
change, a consumer must inform an ICRAS agent of
these changes. A change in requirements can occur
for several reasons. First, based on current events or
past experience, a consumer can predict increases or
decreases in computing needs. For instance, online
retailers receive more traffic leading up to the holi-
days. Second, a change in business needs can prompt
an immediate reconfiguration of the resource require-
ments. For instance, a company decides to remove
some legacy applications. Finally, a company’s re-
source requirements can change due to developments
in the market, such as increased competition or lower
consumer demand.

To enable such changes, a consumer monitors the
level of activity on his or her Cloud resources and in-
forms the ICRAS agent if a threshold is crossed and a
new configuration is necessary.

AMS

Broker

Cloud Service Providerx Cloud Service Providery
A A

concurrent negotiation with
multiple CSPs using

WSAG protocol

A

Consumer

interaction with Broker
for best price / QoS

for given requirements

Figure 2: ICRAS architecture with a consumer negotiating with two competing CSPs

3.2 CSP

To enable participation in the ICRAS architecture, a
CSP must offer a compatible interface that is accessed
by the ICRAS agent. This interface must support two
main functions: negotiation and migration. For ne-
gotiation, a CSP must generate SLA templates. For
this, a CSP requires access to internal information of
its Cloud. This includes realtime pricing data, Cloud
utilization and system health (QoS) information, if
available. On the basis of this information a CSP
generates SLA templates describing the available re-
sources. Due to the dynamic nature of CSP resource
availability and pricing, these SLA templates are up-
dated regularly.

Upon request, the SLA templates are delivered to
the ICRAS agent. When the ICRAS agent makes an
offer, the CSP enters a negotiation session. The strat-
egy that drives this negotiation is determined by the
CSP negotiation policy. This policy includes func-
tions for evaluating an offer, threshold values for ac-
ceptance or rejection of an offer and rules governing
the creation of counter-offers.

To support data migration to and from its Cloud,
the CSP interface must support the import and ex-
port of virtual disk images. After creating an SLA
with a consumer, the CSP must support the upload-
ing and import of the consumer’s virtual disk images.
Likewise, these virtual disk images are exported and
downloaded upon request.

3.3 ICRAS agent

This paper assumes that an ICRAS agent is main-
tained by an independent, trusted third party (TTP).
This service has no loyalty to any particular CSP and
therefore can operate fully on behalf of participating
consumers. The ICRAS agent has five major respon-
sibilities: 1) discover CSP resource offerings, 2) eval-
uate these offerings, 3) negotiate an SLA with a CSP
on behalf of a consumer, 4) monitor the provisioning
of the new Cloud resources to detect SLA violations
and 5) assist in migration to the new CSP.

Discovery : The process begins when an ICRAS
agent receives a resource request from a consumer.
The agent then queries all CSPs for one or more SLA
templates describing their available resource offer-
ings. This process is repeated at a regular interval
to discover more appropriate configurations even after
an SLA has been created. Depending on a consumer’s
preferences, he or she is notified if a new and better
suitable configuration is discovered. The consumer is
then given the option to renegotiate a new SLA.

Evaluation : Once received, the agent compares the
CSP templates to the consumer’s request. If a CSP
cannot provide any of the requested resources, this
CSP is removed from consideration. The remaining
templates are then evaluated and ordered using the
preferences of the consumer. For instance, if a con-
sumer specifies that price is the most important at-
tribute, the remaining templates are arranged by price.
Depending on a consumer’s requirements, templates
from multiple CSPs can be selected for separate re-
source requirements. For instance, a consumer may

allow processing and storage to be handled by two
separate CSPs, if this meets the price and QoS needs.

Negotiation : Once the best template has been se-
lected, the ICRAS agent contacts the responsible CSP
to begin negotiations. If multiple templates from
competing CSPs are considered to be acceptable,
these CSPs are contacted for simultaneous negotia-
tions. If a negotiation session results in an offer that is
acceptable by both a CSP and the ICRAS agent (ac-
cording to a consumer’s request), this is sent to the
consumer for final approval. If acceptable, the con-
sumer contacts the CSP directly to create a micro-
SLA. A micro-SLA is used so that a consumer can
migrate to a new configuration or renegotiate the cur-
rent configuration if the opportunity arises.

Monitoring : The task of the ICRAS agent does not
stop after an SLA has been created and a service is be-
ing used. The ICRAS agent monitors system perfor-
mance and detects SLA violations. The ICRAS agent
uses a Monitor Service (MS) to monitor the SLA for
QoS violations, such as slow network response (Clark
et al., 2010). If a violation is detected, the consumer
is notified so they can take corrective action.

Migration : Once a consumer decides to migrate,
the consumer services are migrated to the new CSP.
In the most straightforward case, migration involves
stopping the cloud instances at the current CSP, con-
verting these instances (e.g. disk images) to the for-
mat used by the new CSP, transferring them to the new
CSP and starting them again. The conversion process
is not necessary if CSPs adopt the same industry stan-
dard, such as the Open Virtualization Format (Crosby
et al., 2010).

If services cannot be stopped during migration,
live migration is required. Live migration of cloud
instances can be possible if both CSPs are using the
same virtualization layer (Clark et al., 2005). How-
ever, the heterogeneity of current CSPs complicates
the migration process.

4 ICRAS PROTOCOL

This section gives an example scenario to demonstrate
the process of ICRAS mediated negotiation. This ex-
ample involves two competing CSPs, a single ICRAS
agent and a single consumer. Service requests, SLA
templates and offers are presented in generic format
rather than their official XML format.

Step 1 : A consumer requires Cloud resources. A
consumer specifies these needs using an SLA offer.
This request is summarized in Figure 3. In this re-

quest, a consumer indicates that it needs 10 servers
with CPU power between 1.5. and 3.0 GHz, at least
2 TB of storage and at least 1 GB of traffic. Further-
more, the consumer prefers the Windows OS, requires
an availability of between 95 and 100 percent and a
price below 1000 Euro. This resource request is sent
to the CSP .

RESOURCE REQUEST
Num. of Servers = (10)
CPU GHz = (1.5 - 3.0) | CD:C1, VI:V1
Storage (GB) = (2000 - *) | CD:D100, VI:V1
Traffic (GB) = (1 - *) | CD:D1, VI:V1
Operating Sys. = <Windows, Linux> | PC:YES
Availability = [95 - 100) | CD:C2, VI:V1
Price (EUR) = [0 - 1000) | CD:D2, VI:V1

Figure 3: Consumer generated resource request.

Step 2 : The ICRAS agent receives the request of the
consumer and queries all participating CSPs for their
SLA templates.

Step 3 : Each CSP receives the query and responds
by sending SLA templates that describe the current
resource offering to the ICRAS agent. If the tem-
plates have not yet been generated or are outdated,
they are (re)generated at this point. The SLA template
is generated following the WSAG specification. Ex-
ample templates from two competing CSPs are shown
in Figure 4. In these templates, each CSP displays the
current resource offering.

SLA TEMPLATE CSPx
Num. of Servers = 100
CPU GHz = 2.0
Storage (GB) = 8000
Traffic (GB) = 1000
Operating System = Linux
Availability (%) = 90

SLA TEMPLATE CSPy
Num. of Servers = 50
CPU GHz = 3.0
Storage (GB) = 4000
Traffic (GB) = 500
Operating System = {Windows OR Linux}
Availability (%) = 99

Figure 4: SLA template from two competing CSPs.

Step 4 : Upon receiving the templates, the ICRAS
agent evaluates each template using the consumer’s
request. If a template cannot meet the requirements,
it is immediately removed from consideration. In Fig-
ure 4, the template from CSPx is removed because the
availability offering is outside of the range specified
by the consumer. In the case that more than one tem-
plate remain after the first selection, the ICRAS agent

evaluates them again to determine the most appropri-
ate option. This evaluation is done by comparing key
attributes, such as CPU or Availability.

Step 5 : At this point, the ICRAS agent has se-
lected the best matching CSP. The ICRAS agent gen-
erates an initial SLA offer, as shown in Figure 5. The
ICRAS agent then contacts the selected CSP to begin
negotiations. Following the WSAN specification, the
negotiation consists of rounds of offers and counter-
offers. If no mutually acceptable offer can be found,
negotiation terminates and the ICRAS agent selects a
different CSP. However, in the event that a mutually
acceptable offer is found, this offer is sent on to the
consumer.

SLA OFFER
Num. of Servers = 10
CPU GHz = 3.0
Storage (GB) = 3000
Traffic (GB) = 10
Operating System = Windows
Availability (%) = 99
Price (EUR) = 500

Figure 5: ICRAS agent generated offer.

Step 6 : Once the consumer receives the offer, it re-
evaluates the offering and, if acceptable, contacts the
CSP directly to create a micro-SLA. After the SLA
has been created, the service can be used.

Step 7 : Upon successful creation of an SLA, the con-
sumer migrates his or her services to the new CSP.
This involves converting the virtual disk images to
the format used by the new CSP and then transferring
these images to the new CSP.

Step 8 : Upon successful creation of an SLA, the
ICRAS agent takes on the new task of monitoring
the service on behalf of the consumer. Monitoring
is done by periodically measuring key service metrics
and storing the result. If a violation is detected (e.g.
Availability is less than promised.), the consumer is
notified and corrective action (e.g. fines, credits, and
so forth) is taken. In addition to SLA monitoring, the
ICRAS agent also periodically requests and evaluates
SLA templates from all CSPs. If a new offering is
more appropriate than the current one, the consumer
is notified and migration can take place.

5 Prototype Implementation

The ICRAS architecture is implemented using
the AgentScape distributed middleware plat-
form (Overeinder and Brazier, 2005). Software

agents are used to represent all parties. The appli-
cation of this architecture is demonstrated with an
example execution.

5.1 Environmental Setup

The three major components: Consumer, ICRAS
agent and CSP are represented by (Java) soft-
ware agents running on the AgentScape middle-
ware. AgentScape is a distributed platform for mo-
bile agents designed to be open, scalable, secure and
fault-tolerant. This middleware provides mechanisms
for SLA negotiation, inter-agent communication and
migration.

Two CSPs are chosen that fullfil the minimum
standards of interoperability to support the example:
Amazon Web Services1 and CloudSigma2. On each
of these CSPs a server instance is used to host a soft-
ware agent running on AgentScape. These software
agents represent their respective CSPs. Upon request,
each agent uses their respective APIs to query price
information and generate an SLA template describing
each CSP’s resource offerings. This template is then
sent to the inquiring ICRAS agent using the mecha-
nisms of AgentScape. If an SLA offer is received, the
agent evaluates it and counters with a SendOffers()
or accepts with a CreateAgreement().

An ICRAS agent runs on an instance of
AgentScape on a local server. This agent uses
the mechanisms of AgentScape to communicate
with the agents running at each CSP. Messages are
sent to the CSP agents to RequestTemplates(),
SendOffers() and CreateAgreement(). When
the ICRAS agent has found the most suitable con-
figuration, this is sent to the consumer agent with
SendConfiguration(). If a new CSP is chosen by
the consumer, migration is assisted by the ICRAS
agent. Virtual disk images are downloaded from
the old CSP, converted to their target format using
QEMU (Fabrice, 2005) and then uploaded to the new
CSP.

A single consumer agent runs on a separate in-
stance of AgentScape on a separate local server. This
agent communicates with the ICRAS agent using the
mechanisms of AgentScape. Messages are sent to the
ICRAS agent to RequestConfiguration(). This
message contains the consumer’s resource needs and
preferences. When an acceptable SLA offer is re-
ceived from the ICRAS agent, the consumer responds
with CreateAgreement().

1http://aws.amazon.com/
2http://www.cloudsigma.com/

5.2 Example Execution

Step 1 : The consumer agent currently uses CSP1 to
host a single, Linux-based web server. The consumer
generates a resource request that indicates the need
for a single virtual machine with at least 10 GB of
disk space and 2 GB of memory. The lowest price is
the sole criterium. This request is sent to the ICRAS
agent.

Step 2 : The ICRAS agent receives the request and
queries both CSPs for their SLA templates.

Step 3 : The CSP agents respond by generating and
sending their SLA templates. CSP1 can provide the
requested resources for $0.18 per hour. CSP2 can pro-
vide the requested resources for $0.12 per hour.

Step 4 : The ICRAS agent evaluates the two tem-
plates based on price and chooses CSP2. An SLA of-
fer is sent to the agent of CSP2. The CSP accepts and
responds with an SLA agreement. This SLA agree-
ment is forwarded to the consumer.

Step 5 : The consumer accepts the agreement and
returns it to the ICRAS agent. In turn, the ICRAS
agent forwards this to CSP2. The consumer may now
use the service.

Step 6 : The ICRAS agent now assists with migration
of the disk image. CSP1 supports export of disk im-
ages in RAW format. This image is downloaded and
stored locally at the ICRAS agent. CSP2 supports im-
port of disk images in VMDK format. QEMU is used
to convert from one format to the other. Once for-
mated, the disk image is uploaded to the CSP2. Once
uploaded, the virtual machine at CSP2 is started. Fi-
nally, the virtual machine at CSP1 is terminated and
the service is discontinued.

Note that due to lack of standardization, a separate
ad hoc solution for disk image migration is required
for each unique pair of CSPs.

6 RELATED WORKS

Agent technology is being applied to the task of au-
tomated resource negotiation in many areas, includ-
ing the area of Grid computing. Despite minor differ-
ences, Grid computing is an area that closely resem-
bles Cloud computing in that both provide a paradigm
of utility computing (Foster et al., 2008). Tianfield
uses agents to automate the task of resource negoti-
ation in Grid computing (Tianfield, 2005). As in the
ICRAS architecture, agents are used to represent re-
source providers and brokers in a market. Agents ap-

ply a set of strategies to negotiate an agreement for
resources. Agents are able to span multiple admin-
istrative domains to negotiate access to the necessary
resources for a specific job. As with ICRAS, this al-
lows for the possibility that a single SLA includes re-
sources from several different providers.

Sim proposes a similar architecture for automating
negotiation of SLAs for Cloud resources (Sim, 2010).
Similar to ICRAS, this architecture supports multi-
level, concurrent negotiation between multiple con-
sumers, brokers and providers. A major difference be-
tween these two architectures and the approach used
by ICRAS is the notion of time. These architectures
negotiate per job, rather than per unit of time. Once
an SLA is created, there is no way to dynamically re-
spond to changes in price, utilization, and so forth.
These architectures lack the benefits of micro-SLAs.
There is also no impartial service to monitor the pro-
visioning of resources according to the agreement.

Instead of agents, intelligent mapping of SLA
templates is used in (Breskovic et al., 2011) to in-
crease the success rate of matching Cloud service
offerings to service requests. A set of public SLA
templates is used as the basis of matching providers
to consumers. Providers link their own template to
the public template that most closely matches. The
consumer then searches for a public template that
matches his or her needs and contacts the related
provider. To account for discrepancies between tem-
plates, users can add metadata that specifies mappings
between their template and a public template. Fur-
thermore, public templates slowly evolve to match
market trends.

This approach aims to offer consumers an in-
creased chance of finding the most appropriate re-
source configuration, but does not actively assist the
consumer. There is no party that works on behalf of
the consumer to navigate the large number of resource
offerings and dynamic prices to find the most suitable
CSP and negotiate an SLA. Moreover, the service mi-
gration and SLA monitoring process are left entirely
to the consumer.

7 DISCUSSION

CSPs typically offer multiple interfaces to their
Cloud resources, including a web interface for hu-
man access, as well as a scriptable, Application Pro-
gramming Interface (API) for automated access. The
API allows the consumer to purchase, launch, control
and terminate Cloud resources. Furthermore, the API
often gives the consumer access to pricing informa-
tion. There are efforts to standardize the Cloud in-

terface. Such efforts include the Eucalyptus (Nurmi
et al., 2009) and OpenStack (OpenStack, 2011) open
source APIs.

Another aspect that requires standardization is the
data format used by clouds. CSPs use virtual disk im-
ages to encapsulate a consumer’s data. These disk im-
ages use varying formats, including Amazon’s AMI,
Microsoft’s VHD and VMWare’s VMDK. If data is
stored in one of these formats, there is no straight-
forward process to migrated to a different CSP us-
ing a different format. Each image must first be con-
verted, following a sometimes slow and complex con-
version process. While each format has its support-
ers, a standardized format can be used to increase the
level of interoperability. The Open Virtualization For-
mat (Crosby et al., 2010) has been suggested for this
purpose.

If widely adopted, these standards will make data
and service migration between CSPs more straightfor-
ward. However, the main obstacle to their adoption
is vendor lock-in (Weiss, 2007). CSPs have no in-
centive to make the process of service migration pos-
sible, let alone straightforward; therefore, migrating
away from a CSP remains a difficult task. A con-
sumer does not always have the option to export or
download their virtual disk images from a CSP. This
means, once a consumer has migrated to a particular
CSP, the cost and hassle of leaving that CSP prohibits
them from doing so, even if a better configuration is
found at a different CSP. Note that complete state-full
migration, i.e., where a snapshot of a running image
is migrated and the state of the newly migrated im-
age is updated, is still an open research question. The
discussed solution would only preserve the state until
the snapshot is made, so some state is lost (when the
image is migrating).

Finally, wider adoption of dynamic pricing in
Clouds is needed to allow users to react to changes in
real market forces, including Cloud utilization. Some
providers have begun offering dynamic pricing mod-
els to reflect the actual fluctuation of resource supply
and demand. Dynamic pricing is beneficial to both
consumers and providers of Cloud resources. Con-
sumers can shift demand to cheaper time slots, such
as evening or weekend processing, to save on costs.
CSPs can take advantage of demand shifting to lower
costs during peak periodes. For instance, a CSP can
reduce the cost of cooling a data center at noon on a
hot day by making it cheaper to use the data center at
night.

Cloud computing was originally envisioned as a
utility, similar to the electricity grid, where users can
simply plug in to their computing needs. To enable
this vision, more standardization and openness is re-

quired in the Cloud interface and data format.

8 CONCLUSION

As the Cloud continues to grow and attract users, the
numer of providers and Cloud resources increases.
Consumers need new mechanisms to make the pro-
cess of finding the most appropriate Cloud resource
configuration as straightforward and automated as
possible. There are many attributes that must be com-
pared when choosing the right Cloud provider, includ-
ing QoS, reputation and price.

The Intelligent Cloud Resource Allocation Ser-
vice (ICRAS) gives Cloud consumers a straightfor-
ward interface to finding the most suitable Cloud re-
source configuration. This service compares all avail-
able offers and monitors the current price informa-
tion. In addition, the service mediates the creation
of micro-SLAs. Using micro-SLAs allows consumers
to respond to changes in the market and renegotiated
their services for lower prices or different providers.
The ICRAS also monitors the service for any SLA vi-
olations.

ICRAS benefits the consumer by relieving them
of the task of constantly checking all CSPs and find-
ing the lowest price. CSPs also benefit from ICRAS
by gaining more market visibility. For instance, by
participating with ICRAS, a small CSP can com-
pete directly with larger, established CSPs, as con-
sumers compare resource offerings independent of
name recognition.

Future work will investigate the creation of com-
plex SLAs. For instance, a consumer requires stor-
age and compute power. One CSP offers the lowest
price for storage, while another the lowest price for
compute power. In this case, two separate SLAs are
needed.

Additional CSP attributes will also be researched,
including reputation and location. The geographical
location of a CSP determines the laws that apply to
the data (Ruiter and Warnier, 2011).

ACKNOWLEDGEMENTS

This work is supported by the NLnet Foundation
(www.nlnet.nl).

REFERENCES

Anandasivam, A. and Premm, M. (2009). Bid price control
and dynamic pricing in clouds. In Proceedings of the

European Conference on Information Systems, pages
1–14.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Lud-
wig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke,
S., and Xu, M. (2007). Web Services Agreement
Specification (WS-Agreement) GFD-R-P.107. Tech-
nical report, Global Grid Forum, Grid Resource Allo-
cation Agreement Protocol (GRAAP) WG.

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2010). A view of cloud computing.
Communications of the ACM, 53(4):50–58.

Baliga, J., Ayre, R., Hinton, K., and Tucker, R. (2011).
Green cloud computing: Balancing energy in process-
ing, storage, and transport. Proceedings of the IEEE,
99(1):149–167.

Borenstein, S. (2005). The long-run efficiency of real-time
electricity pricing. Energy Journal, 26(3):93–116.

Brazier, F., Cornelissen, F., Gustavsson, R., Jonker, C., Lin-
deberg, O., Polak, B., and Treur, J. (2002). A multi-
agent system performing one-to-many negotiation for
load balancing of electricity use. Electronic Com-
merce Research and Applications, 1(2):208–224.

Breskovic, I., Maurer, M., Emeakaroha, V., Brandic, I., and
Altmann, J. (2011). Towards autonomic market man-
agement in cloud computing infrastructures. In In-
ternational Conference on Cloud Computing and Ser-
vices Science. CLOSER.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. (2005). Live
migration of virtual machines. In Proceedings of the
2nd conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages
273–286, Berkeley, CA, USA. USENIX Association.

Clark, K. P., Warnier, M., Quillinan, T. B., and Brazier,
F. M. T. (2010). Secure monitoring of service level
agreements. In Proceedings of the Fifth International
Conference on Availability, Reliability and Security
(ARES 2010), pages 454–461. IEEE.

Crosby, S., Doyle, R., Gering, M., Gionfriddo, M., et al.
(2010). Open virtualization format specification 1.1.0.
Technical report, Technical Report DSP0243, Dis-
tributed Management Task Force, Inc.

Fabrice, B. (2005). Qemu, a fast and portable dynamic
translator. In USENIX 2005 Annual Technical Con-
ference, FREENIX Track, pages 41–46.

Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud
computing and grid computing 360-degree compared.
In Grid Computing Environments Workshop, 2008.
GCE’08, pages 1–10. Ieee.

Jennings, N., Faratin, P., Lomuscio, A., Parsons, S.,
Wooldridge, M., and Sierra, C. (2001). Automated ne-
gotiation: prospects, methods and challenges. Group
Decision and Negotiation, 10(2):199–215.

Jennings, N. and Wooldridge, M., editors (1998). Appli-
cations of Intelligent Agents, chapter 1, pages 3–28.
Agent Technology: Foundations, Applications, and
Markets. Springer.

Jonker, C. and Treur, J. (2001). An Agent Architec-
ture for Multi-Attribute Negotiation. In Interna-
tional Joint Conference on Artificial Intelligence, vol-
ume 17, pages 1195–1201. Lawrence Erlbaum Asso-
ciates LTD.

Koritarov, V. (2004). Real-world market representation with
agents. Power and Energy Magazine, IEEE, 2(4):39–
46.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2009). The
eucalyptus open-source cloud-computing system. In
Cluster Computing and the Grid, 2009. CCGRID’09.
9th IEEE/ACM International Symposium on, pages
124–131. IEEE.

OpenStack (2011). Openstack: Open source software for
building private and public clouds. http://www.
openstack.org.

Ouelhadj, D., Garibaldi, J., MacLaren, J., Sakellariou, R.,
and Krishnakumar, K. (2005). A multi-agent infras-
tructure and a service level agreement negotiation pro-
tocol for robust scheduling in grid computing. Ad-
vances in Grid Computing-EGC 2005, pages 651–
660.

Overeinder, B. and Brazier, F. (2005). Scalable Middleware
Environment for Agent-Based Internet Applications.
Lecture Notes in Computer Science, 3732:675.

Pueschel, T., Anandasivam, A., Buschek, S., and Neumann,
D. (2009). Making Money With Clouds: Revenue
Optimization Through Automated Policy Decisions.
In 17th European Conference on Information Systems
(ECIS 2009), Verona, Italy, pages 355–367.

Ruiter, J. and Warnier, M. (2011). Privacy Regulations for
Cloud Computing, Compliance and Implementation
in Theory and Practice, chapter 17, pages 293–314.
Springer.

Sim, K. (2010). Towards complex negotiation for cloud
economy. Advances in Grid and Pervasive Comput-
ing, pages 395–406.

Tianfield, H. (2005). Towards agent based grid resource
management. In Cluster Computing and the Grid,
2005. CCGrid 2005. IEEE International Symposium
on, volume 1, pages 590–597. IEEE.

Waldrich, O., Battre, D., Brazier, F. M. T., Clark, K. P.,
Oey, M. A., Papaspyrou, A., Wieder, P., and Ziegler,
W. (2011). WS-Agreement Negotiation: Version 1.0
(GFD-R-P.193). Technical report, Open Grid Fo-
rum, Grid Resource Allocation Agreement Protocol
(GRAAP) WG.

Weiss, A. (2007). Computing in the clouds. netWorker,
11(4):16–25.

