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Abstract

Distributed management of complex, distributed systems
is the focus of this paper. Adaptation through local delib-
eration by software agents within a hierarchical virtual or-
ganization is the approach taken. Global stabilization of
resource utilization is the goal. Electricity networks are
used to illustrate the potential of two fitness functions on
the basis of which local choices for resource utilization are
made: minimizing oscillations is the first function consid-
ered, reversing oscillations the second. Results reveal con-
siderable increase in the stabilization of resource utiliza-
tion compared to a system that utilizes resources in a greedy
manner.

1. Introduction

Complex, intelligent, distributed systems in dynamic en-
vironments need to adapt continually. Central management
of such systems is not often an option: distributed man-
agement is required. This paper addresses distributed man-
agement of resource utilization. Resources are managed by
software agents. Software agents are capable of reason-
ing with and about (1) their own knowledge at any given
time, (2) knowledge they receive from other agents and (3)
knowledge they acquire from interaction with their environ-
ment, with respect to their goals. They act accordingly,
adapting to change as required. Note that adaptivity has
been recognized as a means to handle arising complexity of
knowledge and interactions [14].

Virtual organizations of agents define communication
structures between agents, e.g., hierarchical organiza-
tions [4], between and within which agents can choose to
cooperate and coordinate their actions, or compete. Dy-
namic organized hierarchies [9] can be used to support
adaptive, aggregate, nonlinear behavior, as a means to re-

duce complexity. Coordination in unstructured environ-
ments entails distributed search and distributed schedul-
ing [13, 5].

This paper proposes a fully decentralized agent-based
approach to global stabilization of resource utilization,
based on local coordination. The core question addressed
is:

To which extent can global stabilization in resource uti-
lization be acquired by local coordination of resource uti-
lization using software agents to manage resources?

The approach is threefold and can be outlined as follows:

1. Agents are members of a hierarchical virtual organiza-
tion, structuring agent interactions and aggregation of
agent resource requirements.

2. A simple agent knowledge model is assumed on the
basis of which resource requests are generated.

3. Agents can make local adaptive decisions on the basis
of information they receive from the agents to which
they are linked.

The problem and the proposed solution are illustrated
in the context of the electricity domain. In this context,
global stabilization is acquired in the energy consumption
of an electricity network. In particular, this paper focuses on
minimizing the oscillations of thermostatic controlled appli-
ances. These devices, (e.g. refrigerators, air conditioners,
water heaters) consume 25% of the total energy supply in
the USA [10], thus management of these devices can have
a significant effect on the stabilization of global resource
consumption. Software agents can autonomously negotiate
their resource requirements and configuration [3, 2].

Based on the above application domain, a network
of interconnected software agents representing thermo-
static devices has been designed, developed and imple-
mented/simulated. Agents interact and use local knowledge
on the basis of which they make local adaptive decisions



towards stabilizing the global consumption. Two different
algorithm variations have been examined: (i) one that aims
to achieve minimum oscillations in each and every aggre-
gation round and, (ii) one that reverses oscillations with re-
spect to a previous aggregation round (to acquire the op-
posite deviation values). This results in global stabiliza-
tion over a series of aggregation rounds. The first variation
shows considerable improvement in the global stabilization
compared to a greedy system that makes random resource
utilization choices from the set of its alternative utilization
options. The second algorithm variation achieves almost
constant utilization with minimum oscillations over time.

2. The Distributed Coordination Environment

This paper assumes a distributed environment with soft-
ware agents representing thermostatic devices that manage
their behavior. Agents reason about resource utilization
within a given period of time, generating alternative dis-
tributions of resource utilization within this period, with
equivalent effect. In this paper, these alternative utilization
distributions are called possible plans.

The most straightforward solution to the above problem
is to centrally combine and aggregate all possible plans for
all of the agents, and to choose the best combination. This
solution guarantees the discovery of the best global solu-
tion, considering and assuming that the sets of possible
plans do not change during aggregation. Central aggrega-
tion, however, does not scale. The complexity is O(pn),
where p is the number of possible plans per agent and n is
the number of agents in the network. In contrast, the chal-
lenge in distributed solutions is to perform distributed com-
putation and decision making in a cost-effective manner.

The solution this paper proposes is to stabilize global uti-
lization by decentralized energy plan aggregation within a
hierarchical virtual structure. In this case, complexity is
bounded to O(pc) where c is the number of children per
node in the hierarchical structure. The estimations assume
a balanced hierarchical structure, i.e., a tree structure, and
fixed p for all agents. Scalability improves significantly and
it is influenced by the trade-off between processing cost and
latency.

The hierarchical structure minimizes communication
overhead. Each node receives one message from each of
its children, and one message from its parent during each
aggregation round. The problem of robustness can be over-
come by building reliability-driven hierarchical structures,
i.e., trees. In this approach, more reliable nodes move up in
the tree, leaving unreliable ones underneath to minimize the
effect of failure. Although this paper does not focus on the
issue of tree robustness, various mechanisms can be used to
guarantee a relatively stable tree [12].

The resource utilization profile of an agent depends on

various factors, including a number of uncertainties [8] in
user consumption, influenced by the characteristics of indi-
vidual devices and the environments in which the devices
operate. This paper assumes that the utility functions used
by agents to devise alternative plans for resource utilization,
take these uncertainties into account, see [6, 7]. These plans
denote the options for energy consumption, i.e., the distri-
bution of consumption, over a fixed period of time. Finally,
the on/off state of the thermostat is configured by temper-
ature setpoints. Modifying the temperature creates equiva-
lent operational states for the device [1]. These states are
the possible plans that the agents can generate.

3. The Locality of the Agents

Agents use local knowledge to perform local computa-
tions and execute their tasks locally, using knowledge ac-
quired from their children and/or their parent.

3.1. Overview of Agent Tasks

The main tasks of an agent are (plan) generation, (plan)
aggregation and (plan) execution:

Generation is composed of two subtasks:

• Planning: A set P of possible plans p is generated for
the energy consumption of the thermostatic device that
an agent represents over a fixed time period.

• Parent Inform: The agent sends its possible plans P
and its aggregate knowledge a to its parent. The aggre-
gate knowledge is described in detail in Section 3.2.

Aggregation is composed of three subtasks:

• Selection: Upon receiving the sets of possible plans
P from each of its children together with the aggre-
gate knowledge a, the agent chooses the best plan
combination c′ ∈ C according to a fitness function
f(C,A,h). The fitness function receives as input the
set C with all the unique combinations c of plans de-
rived from the possible plans p received from each
of the children. The computation of C is illustrated
in Section 3.3. It also receives the set A of each of
its children’s aggregate knowledge a and the history
knowledge h that is locally retained. The history h is
described in detail in Section 3.2.

• Update: The agent’s aggregate knowledge a is up-
dated as update(c′,A,h). More information about
the update task is given in Section 5.1 and 5.2.

• Children Inform: The agent sends the selected plans
p′ to its children.



Execution concerns the execution of the selected plan
p′ ∈ P that has been received from the parent.

The root agent executes an additional broadcast task that
is important for the aggregation process. Section 4 pro-
vides more information about the execution of this addi-
tional task.

3.2. Aggregate and History Knowledge

The aggregate knowledge a = (an,ah) represents the
selections of a set of agents that have been made so far. It
includes: the aggregate new plan an and the aggregate his-
tory plan ah. The latter is the plan that represents the selec-
tions of the respective agents in the previous aggregation.
Note that p′ ∈ h ⊆ ah ⊆ g ∈ h. The aggregate knowl-
edge a known to leaf agents is zero, whereas the aggregate
knowledge of the root agent, at the end of each round, is the
final converged global plan.

The notion of history h as part of each agent’s knowl-
edge is, in fact, a set h = (p′, g) that includes: (i) the most
recently selected plan p′ ⊂ g ∈ h and (ii) the root’s aggre-
gate plan, that is the global plan g as a result of an aggrega-
tion round. This plan is broadcasted by the root at the end
of each round. The broadcast task is illustrated in Section
4.

3.3. Pre-Processing of the Local Knowledge

Before an agent can calculate the fitness function, it per-
forms some pre-processing of the information it receives
from its children. This pre-processing concerns the compu-
tation of all possible combinations C of all possible plans
received from its children. For example, an agent with 2
children, each with 2 possible plans will generate the fol-
lowing 4 combinations:

C = {(P 1
1 + P 2

1), (P
1
1 + P 2

2), (P
1
2 + P 2

1), (P
1
2 + P 2

2)}

with the expression P child
plan defining the plans in every

combination.
Each agent also merges the aggregate knowledge re-

ceived from its children by summing up the respective ag-
gregate plans. The aggregate knowledge is merged as fol-
lows:

a = {
∑

i=1,2,...,|A|

an ∈ Ai,
∑

i=1,2,...,|A|

ah ∈ Ai} (1)

4. The Aggregation Process

The core agent algorithm for each (non-root) agent ‘A’
with children ‘C1’,‘C2,’,... and a parent ‘P’ (see Figure 1)

starts when a ’parent-inform’ is received by an agent and is
outlined by the sequence of tasks executed as illustrated in
Algorithm 1 below.

Figure 1. A generic agent ‘A’ that performs
the core agent algorithm

Algorithm 1 Core agent algorithm
if receive parent inform and is not root
then aggregation-selection;

aggregation-update;
aggregation-children inform;
generation-planning;
generation-parent inform;

The leaf agents and the root agent have a special role dur-
ing an aggregation round. The leaf agents wait for a broad-
cast message to initiate the aggregation process by execut-
ing the two ‘generation’ subtasks in order. The root agent
selects its own execution plan, without sending the plans
to another agent. In this case, the set of combinations is
C = P . In other words, the root aggregates twice, one for
its children and one for itself. Moreover, the root broadcasts
information to all the other agents and initiates the next ag-
gregation round.

Two levels of aggregation are distinguished in the aggre-
gation process : The aggregation step and the aggregation
round. Figure 2 illustrates these two concepts.

Figure 2. The aggregation step and aggrega-
tion round
An aggregation step is defined by the core agent execu-

tion process described above for each agent within the same
level in the hierarchical structure. Given input from its chil-
dren, each agent within the same level of the hierarchical
structure aggregates the information and sends results to its
parent and to its children. The procedure recurses, starting
from the leaf agents up to the root agent.



An aggregation round is defined by all of the consec-
utive aggregation steps starting from the leaf agents up to
the root agent, ending with the global aggregate plan g be-
ing broadcasted to all agents. When the leaf agents receive
the broadcast message, the next aggregation round is trig-
gered. Alternatively, although not discussed in this paper, a
next aggregation round can start independently by the leaf
agents. In this case, multiple aggregation round may run
simultaneously over the hierarchical structure.

5. Fitness Function

The fitness function forms the core of the adaptivity and
decision making of the agents. This function is used by
agents for the selection of the best combination. Two dif-
ferent fitness functions have been devised, implemented and
evaluated. The goal of both fitness functions is to stabilize
resource utilization over time.

5.1. Stabilization by Minimizing Deviations

The simplest fitness function defines the best combina-
tion c′ to be the combination that minimizes the standard
deviation σ of the aggregate new plan an. In this stabiliza-
tion scenario, the fitness function can be expressed as:

fMD = min
i=1,2,...,|C|

σ(an + Ci) (2)

This fitness function checks which of the potentially new
aggregate plans has the minimum overall standard deviation
σ. Section 6 discusses the convergence of the process. The
selected plans for every child are extracted from the best
combination c′. Moreover, the aggregate knowledge is up-
dated. This action concerns the update of the aggregate new
plan as an = an +c′. Finally, the selected plans are sent to
the respective children.

5.2. Stabilization by Reversing Deviations

The second fitness function averages out the global re-
source utilization between aggregation rounds, by reversing
deviations in an existing global plan. This history global
plan was devised by the same agents, representing the same
devices in the same virtual structure. This fitness function
specifies that, if resource providers have to supply g + vt

amount of resources at time t, the reverse of the deviations
provides g − vt. vt is the difference between the average
value g and the value of the global plan at time t.

The aggregation process remains exactly the same. The
fitness function is calculated as follows:

fRD = min
i=1,2,...,|C|

σ(

history︷ ︸︸ ︷
g − ah +

new︷ ︸︸ ︷
an + Ci) (3)︸ ︷︷ ︸

replacement

The aggregate history ah is replaced by the equivalent
summation of the aggregate new plan an and the plan Ci

from the combinations (ah ≡ an + Ci). This replacement
is adapted to the global plan g ∈ h.

The concept of this reversing operation is the follow-
ing: The average of the global history plan and global new
plan must ideally result in zero deviations. This is because
(g+vt)+(g−vt)

2 = g. Choosing the combination that con-
tributes best on transforming vt to −vt results in a global
plan with reversed deviations. The transformation is gradu-
ally achieved in every aggregation step. Section 6 discusses
the convergence of this process.

Finally, as in the previous scenario, the aggregate knowl-
edge is updated as a = {(an = an + c′), (ah = ah +p′ ∈
h)}. As mentioned in Section 5.1, the selected plans are
extracted and sent to the respective children.

6. Emerging Stabilization Convergence

The two fitness functions described in Section 5.1 and
5.2 are based on local knowledge. The decisions each agent
makes are based on the aggregate plans it receives from its
children, by definition an incomplete version of the global
knowledge. Summations are performed over the hierarchi-
cal structure during the aggregation process. In each ag-
gregation step, the aggregate values of the aggregate plans
increase. As a result, the combinations are adapted to plans
that come from the operations of more agents.

The aggregation starts from the leaf agents. The parents
provide the best solution taking into account the informa-
tion from children. The aggregate knowledge is zero. In
the next steps, local decisions have a twofold advantage.
Each agent not only chooses the plans (1) that satisfy the
stabilization goal locally but also (2) plans that ‘fade out’
the effect of less optimal decisions in previous aggregation
steps. For the first fitness function, the approach based on
minimizing deviations, the second advantage is achieved by
adapting the combinations to the aggregate new plan. For
the second fitness function, the approach based on reversed
deviations, the aggregate history plan is replaced by the ag-
gregate new plan and adapted to the global history plan. The
effect of adaptation increases after each aggregation step.

This step-by-step emerging convergence is depicted in
Figure 3 for the second fitness function, namely the func-
tion based on reversed deviations. In the first aggregation
steps, decisions are mainly based on the history plan. As
aggregation evolves, the global history plan is gradually re-
placed by the aggregate new plans. Finally, the aggregate



new plan converges to the new global plan devised by the
root agent.

Figure 3. Step-by-step aggregation and sta-
bilization convergence using reversed devia-
tions.

7. Experiments and Results

This section illustrates the experimental environment
and the results of the stabilization approach. More specifi-
cally, the two fitness functions described in Section 5.1 and
5.2 are applied to two energy management scenarios: oscil-
lations minimization and oscillations reverse.

The goal of the experiments is to reveal how a system
that coordinates multiple utilization plans locally outper-
forms a fitness function in which an agent’s choice of plans
is based on random selection.

The experimental study aims to answer the three follow-
ing questions:

1. What is the degree of oscillation minimization
achieved in the hierarchical structure compared to
random plan selection and centralized coordination?

2. What is the degree of successful reversed oscillations?

3. How does the number of possible plans influence the
effect of the two fitness functions in a hierarchical
structure?

Section 7.1 outlines the simulation environment and Sec-
tion 7.2 and 7.3 illustrate the results for the two stabilization
actions.

7.1. Simulation Environment

The simulation scenario assumes a network of intercon-
nected thermostatically controlled appliances. These de-
vices are represented by software agents in a hierarchical
virtual structure. The hierarchical structure, that is a tree,
is balanced. The heterogeneity of devices over the network
is simulated by a top-down approach illustrated in Figure 4
below.

Figure 4. The top-down approach of the sim-
ulation environment configuration
The simulation configuration starts by considering the

following (Level 1 in Figure 4): (i) the average consump-
tion of a generic thermostatically controlled appliance, (ii)
the deviation of this average consumption that provides dif-
ferent types (refrigerator, water heater etc.) of thermostatic
devices and (iii) the total number of these types. Then a
number of average consumption seed values for every type
of device are randomly generated (Level 2 in Figure 4). The
seed values belong to the range defined by the deviation of
average consumption that provides different types of ther-
mostatic devices. The number of seeds is equal to the num-
ber of types of thermostatically controlled appliances in the
network. The consumption of a specific type of device also
varies in much smaller proportion compared to the devia-
tion of average consumption among different types (Level 3
in Figure 4).

Moreover, every agent in the network, regardless of
which type of device it represents, generates a fixed num-
ber of possible plans over a fixed time period (Level 4 in
Figure 4). The generation of the plans is simulated as fol-
lows: for every final average consumption of every device,



a random sample is generated with size equal to the num-
ber of energy values of the plan. The values are estimated
between a percentage range of plan deviation from the av-
erage consumption value of the plan. For example, a 20%
plan deviation from the average consumption of value 10,
results in deriving the random value from the range [8,12].

Finally, user consumption profiles are simulated (Level
5 in Figure 4). Each device has a high, a medium and a
low consumption profile. A consumption profile coefficient
multiplies or divides respectively the values of the possible
plans. The profiles change cyclically in every round and
they are initially attributed randomly between devices. This
means that every individual device may start with any of
the high, medium and low consumption profiles and it will
follow the same cyclical row in every round.

There are two simulation environments. The first simu-
lation environment is a small-scale system with 15 agents,
each with 2 possible plans. This environment is used for
running the centralized coordination as the central coordi-
nation of 3280 agents does not scale. The second environ-
ment represents a large-scale distributed system with 3280
agents with every agent generating 5 possible plans. Most
of the experiments are performed in this environment. Ta-
ble 1 outlines the parameters for each of the simulation en-
vironments.

Table 1. Simulation environments
Parameter SE 1 SE 2

Num. of Agents 15 3280
Num. of Children 2 3

Num. of Possible Plans 2 5
Num. of Values/Plan 10 10

Avg. Device Consumption 0.5 0.5
Num. of Device Types 3 3

Avg. Cons. Deviation/Type 0.35 0.35
Avg. Cons. Deviation/Type/Device 0.035 0.035

Plan Deviation 90% 90%
Num. of Consumption Profiles 3 3

Consumption Profile Coefficient 2 2

Note that the units for energy consumption are the same
in both environments.

7.2. Oscillations Minimization

The oscillations minimization corresponds to the mini-
mum deviations fitness function. The stabilization is evalu-
ated by calculating the standard deviation of the final plans
at the end of each round. Figure 5 shows a stacked bar chart
with a comparison of the stabilization effect between the
proposed hierarchical aggregation, the central coordination
and the random plan selection.

Figure 5. Stabilization comparison of hierar-
chical coordination vs. random plan selec-
tion and central coordination in the ‘SE 1’

The comparison in this small-scale environment indi-
cates that the proposed method outperforms random plan
selection and is not far from the optimal centralized coor-
dination. The average standard deviation for 100 rounds in
the centralized solution is 0.42, in hierarchical aggregation
and random plan selection the standard deviation is 0.79 and
1.08 respectively.

Figure 6 illustrates the energy consumption of 3 consec-
utive global plans that consist of 30 time intervals. In every
round, or every 10 time intervals, the consumption changes
due to the individual profiles. Note that the normalization
of the global consumption is higher and closer to the aver-
age. The oscillations decrease 78.71%, 36,54% and 73.46%
in the respective coordinated global plans compared to the
random plan selection. This difference in the global plans
is depicted in the three enlarged figures.

Figure 6. The global energy consumption of
hierarchical coordination and random plan
selection in the ‘SE 2’ during 3 rounds
Please note that the proposed stabilization method does

not aim to stabilize consumption between different profiles.



The global energy consumption changes and this paper fo-
cuses on the decrease of positive and negative peak loads in
the aggregate plans.

Finally, the effect of increasing the number (#) of pos-
sible plans in standard deviation is illustrated in Figure 7.
The values are the average ones of 30 simulation rounds for
each of the 3 consumption profiles (90 rounds in total). The
values of the profiles are also averaged for each method and
depicted with the thicker solid lines.

Figure 7. The change in the standard devia-
tion of the global plans in ‘SE 2’ as the num-
ber of possible plans increases
The increase in the number of possible plans influences

the stabilization positively. For 2 possible plans the differ-
ence between the two methods is 9.41, whereas for 7 possi-
ble plans it almost doubles to 17.96, denoting almost double
improvement. The reason for this positive influence is the
increased number of options from which agents can choose,
resulting in a higher potential for better stabilization.

7.3. Oscillations Reverse

The oscillations reverse corresponds to the reverse oscil-
lations fitness function. The evaluation focuses on how well
the aggregate new plan reverses the aggregate history plan.
This means that, ideally, the average of these two must be
a plan with zero deviations, resulting in a flat global energy
consumption.

Figure 8 illustrates three global energy plans that corre-
spond to the different consumption profiles. The global new
plan converges to a mirroring version of the global history
plan. The average of these two plans is also drawn to depict
the effect of the flat energy consumption.

The number of possible plans also influences the revers-
ing effect. In this case, the similarity between the history
and new global plan has been examined by increasing the
number of possible plans in each agent. Similarity is mea-
sured by calculating the correlation coefficient r of the val-
ues of the plans. If the value of the correlation coefficient

Figure 8. The reverse effect between the his-
tory and new plan in ‘SE 2’

approaches ‘-1’, perfect reversing has been achieved. Fig-
ure 9 illustrates how the increase in the number (#) of pos-
sible plans results in a better negative correlation.

Figure 9. Negative correlation of the global
plans in ‘SE 2’ as the number of possible
plans increase

7.4. Evaluation Summary

The results in the two simulation environments depicted
in Table 1 provide the following answers to the questions
set at the beginning of this section:

1. What is the degree of the minimum oscillations
achieved in hierarchical coordination compared to
random plan selection and centralized coordination?

Hierarchical coordination always provides higher sta-
bilization than random plan selection. In the large-
scale experimental environment, oscillations decrease
in the range of 36.54%-78.71%. The smaller-scale ex-
perimental environment indicates stabilization of hier-
archical coordination (0.79) between central coordina-
tion (0.42) and random plan selection (1.08).



2. What is the degree of the successful oscillations re-
verse?

The reversed plans approach the maximum possible
negative correlation. The correlation coefficient ap-
proaches ‘-1’. The average result of the two plans cor-
responds to a flat stabilized plan with its oscillations
approaching zero.

3. How does the number of possible plans influence the
effect of the two stabilization functions?

The increase in the number of possible plans increases
the stabilization in both fitness functions. In the min-
imum oscillations, the improvement between hierar-
chical coordination and random plan selection almost
doubles. In oscillations reverse, the negative correla-
tion increases to approach ‘-1’.

These achievements come together with a bounded pro-
cessing cost to the number of children of every node.

8. Conclusions and Future Work

This paper describes a method of global stabilization of
resource utilization, by local coordination. More specifi-
cally, agents provide alternative options, aggregate informa-
tion, choose utilizations and communicate over a hierarchy.
The main contribution of the proposed approach is the fol-
lowing:

Hierarchical local coordination achieves emerging con-
vergence of the global stabilization through local knowl-
edge, local decisions and local interactions by individual
software agents.

This paper describes the stabilization problem in the con-
text of the electricity domain. It shows how the require-
ments of the proposed method fit with the requirements of
electricity suppliers for minimizing oscillations in energy
consumption. The results for two different fitness functions
reveal a considerable improvement compared to a system
that randomly chooses utilizations to satisfy its own goals.

The hierarchical organization can influence the effect of
the proposed method. Thus, future work should shed light
on how the number of children, the number of levels in the
hierarchical structure and the failures affect the global sta-
bilization and the performance of the aggregation. Work
on extending the results to simulations in an asynchronous
communication environment is in progress. Experiments
will run on the AgentScape [11] platform, a middleware
system that supports large-scale agent systems.
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