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Tree topologies are often deployed in large-scale distributed systems to structure a hierarchical
communication. Building and maintaining overlay networks self-organized in tree topologies is
challenging to achieve in dynamic environments. Performance trade-offs between resilience to
failures and message overhead need to be considered. This paper introduces eight adaptation
strategies that provide a higher abstraction, modularity and reconfigurability in the tree self-
organization process. Performance can be further enhanced by dynamically changing strate-
gies during system runtime. Experimental evaluation illustrates the performance trade-offs and
properties of adaptation strategies.
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Introduction

Distributed systems and their applications often require
an organizational structure to perform their operations effi-
ciently. Certain topologies of overlay networks are defined
by graph properties that enable or enhance a specific appli-
cation. Tree topologies are one of them. Their properties,
e.g., path uniqueness, and the hierarchy they reflect enable
operations such as decentralized search, decision-making,
aggregation or information dissemination. These operations
are fundamental in various application domains such as dis-
tributed databases [González-Beltrán et al., 2008; Zhuge and
Feng, 2008], application-level multimedia multicasting [Tan
et al., 2005a] and grid computing [Chakravarti et al., 2006].

However, trees suffer from lack of redundancy and there-
fore their structure is sensitive to single node or link failures.
Moreover, a tree experiences heterogeneous load, meaning
that nodes close to the root of the topology receive messages
forwarded from all the other nodes at the bottom part of this
tree. This effect is also related to the impact of a failure that
is much higher for nodes close to the root of a tree. All of
these issues make the use of trees in dynamic distributed en-
vironments challenging and sometimes infeasible.

Self-organization in trees is required to overcome these
limitations. A robust tree requires both building and main-
tenance during runtime of a distributed application. Nodes
self-organize themselves in a tree topology that ideally min-
imizes the impact of their failures. One way to achieve this
optimization is by ordering a tree according to specific ap-
plication criteria, i.e., the performance profile of nodes. An
optimized tree may also have constraints such as the number
of children with which each node can connect. All of these
criteria should be met during self-organization.

This paper studies the adaptation strategies of AETOS,
the Adaptive Epidemic Tree Overlay Service Pournaras et al.
[2010b,a]. Self-organized tree topologies with different
graph properties are formed by simply using certain adopting
adaptation strategies. This paper shows how these strategies
can be combined dynamically, providing a powerful meta-
level of adaptation and abstraction in the self-organization of
tree topologies based on which a wide range of performance
trade-offs can be explored as confirmed by the experimental
findings of this paper.

Some of the basic system components of AETOS are
described in our earlier work [Pournaras et al., 2010b,a].
In contrast, the contribution of this paper is three-
fold [Pournaras, 2013]:

1. The problem of building and maintaining robust tree
topologies is illustrated as a more generic graph theoretic
problem. The selection of graph properties studied in this
paper is grounded to applications that perform distributed op-
erations based on tree topologies.

2. The design of adaptation strategies is improved to
achieve higher performance and abstraction as shown in new
extensive experimental results studied in this paper. More-
over, this paper extends the adoption of adaptation strategies
from static to dynamic resulting in improved performance.

3. A survey of related methodologies is illustrated that
distinguishes the more generic features of AETOS compared
to other application-dependent mechanisms for building and
maintaining tree topologies.

The organization of this paper is outlined as follows:
‘Problem Description’ illustrates graph properties of tree
topologies and their relation to distributed applications. It
also defines performance metrics for self-organization. ‘Sys-
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tem Overview’ provides a high-level overview of AETOS.
‘Dissemination and Collection’ illustrates the bottom level
of the AETOS architecture. ‘Clustering’ discusses the input
and adaptations of the middle level. ‘Building and Main-
tenance’ shows the establishment of parent-child links in
the top level. Moreover, ‘Adaptation Strategies’ illustrates
a number of generic strategies engaged in the middle level of
AETOS. ‘Experimental Evaluation’ follows. ‘Comparison
with Related Work’ compares AETOS with related method-
ologies. ‘Conclusions’ concludes this paper.

Problem Description

Trees are connected undirected acyclic graphs [Baldwin
and Scragg, 2004; Gross and Yellen, 2005] with some graph
properties such as degree-bounding, ordering, balancing and
completeness that influence the performance of distributed
applications, making a tree more robust to node failures or
balancing the load between nodes. This paper focuses on
building optimized tree topologies that tune and reflect spe-
cific graph properties to meet requirements of various appli-
cation types.

Graph properties and applications

Trees may have graph properties that influence the perfor-
mance of several distributed applications:
• Degree-bounding: The degree of a vertex is the number

of (non-directional) edges attached to this vertex. The degree
of a vertex that belongs to a tree is the number of its children
plus one for its parent. Degree-bounding of a tree topology
refers to the maximum number of children that a node sup-
ports and is related to various application constraints. For in-
stance, bandwidth, storage and processing capacity of a node
are related to the maximum number of nodes to which mul-
timedia content can be disseminated [Fei and Yang, 2007].
Degree-bounding should be respected during building and
maintenance of tree topologies. If the degree of a node is
significantly lower than the upper bound, then the node is
underloaded or the resources allocated for its application are
not fully exploited. In contrast, if the degree of a node ex-
ceeds the upper bound, then the node is overloaded resulting
in a bottleneck or unavailability of this node. In this case, the
topology may disconnect and the performance of the appli-
cation degrades.
• Ordering: An ordered tree is a rooted tree in which

the children of each vertex are assigned a fixed ordering.
This ordering is performed using assigned weights that rank
vertices of a tree. These weights are usually related to an
application. For example, multimedia multicasting applica-
tions [Birrer and Bustamante, 2007] compute the bandwidth
and availability [Bhagwan et al., 2003] of nodes. Informa-
tion about these metrics can be used for the maximization of
content delivery and speed that is crucial for real-time ap-
plications such as multimedia multicasting. Similarly, social

recommender systems [Manouselis and Costopoulou, 2007]
capture the profiles of users based on their preferences about
an online product or service. Based on preference matching,
these systems increase engagement of users and the quality
of recommendations.
This paper focuses on the level-order scheme [Gross and
Yellen, 2005] that is described as a top-down and left-to-
right traversal. However, note that in practice the actual com-
munication between the nodes always occurs via the parent-
children links. Because of this fact, the distributed applica-
tions to which this paper refers to mainly require a top-down
order rather than a left-to-right order. Positioning nodes with
high availability [Bhagwan et al., 2003] close to the root re-
duces the impact of a node failure as the disconnected branch
is smaller in size. Similarly, node close to the root of a tree
with low bandwidth is a bottleneck. Therefore, ordering pro-
vides a proactive robustness by minimizing the impact that a
low-performing node causes to the topology and its applica-
tions.
• Balancing: A balanced tree with a degree-bounding

for each vertex is a rooted tree from which the leaves have
the same depth or their depth difference is ‘1’, if degree-
bounding of the vertices does not permit having the same
depth. An imbalanced tree experiences an unequal load
among different branches with different path lengths. There-
fore, distributed applications may experience higher latency
and communication overhead due to the higher number of
hops to reach each node of a tree [Jagadish et al., 2006a].
• Completeness: A complete tree is a rooted balanced

tree with all of its vertices, except the leaves, having the max-
imum possible number of children as de?ned by the degree-
bounding. Complete trees have the minimum possible height
given the degree-bounding of the vertices. Overlay net-
works organized in complete tree topologies make effective
resource allocation for their applications as nodes exploit the
maximum number of children without exceeding the upper
bound [Wang et al., 2010].

Performance Metrics

Assume an overlay network of n nodes that forms a tree
topology. Each node i is ranked with a unique weight wi in
the range [0, 1) that represents one or more application crite-
ria. Furthermore, each node i has a node degree di that refers
to the maximum permitted number of established links. The
maximum number of children that a node i has is ki ≤ di − 1.
Each node i has a tree view vi(tree) that is a list of other
ranked nodes. The first element of a tree view corresponds to
the parent and the rest of the elements to the children of node
i.

A degree-bounded, ordered, balanced and complete tree
can be optimally built according to Algorithm 1 in Appendix
A. For illustration purposes, this organizational goal is ex-
plained as a centralized algorithm. However, in a decentral-
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ized self-organization, nodes have limited information about
other nodes and therefore, they need a certain execution time
to discover, structure and coordinate with other nodes with
which they form parent-child links. Performance metrics are
required to quantify the degree to which the illustrated graph
properties are met during the self-organization runtime. This
paper introduces four performance metrics for this purpose:
(i) connectedness β, (ii) connectivity γ, (iii) fitness ρ and (iv)
instability δ().

Connectedness β is the proportion of nodes that are con-
nected to the largest component of the forest: the main tree.
For a forest F of n tree components {T0, ...,Tn−1}, connect-
edness is defined as:

β =
max(|T0|, ..., |Tn−1|)

n
(1)

In contrast, the tree connectivity γ refers to the number
of links established between the nodes relative to the maxi-
mum number of links n − 1 that can be established in a tree
topology [Gross and Yellen, 2005]:

γ =
1

2(n − 1)

n−1∑
i=0

|vi(tree)| (2)

The fitness ρ expresses the quality of the ordering process
based on the selection of the parent and children for each
node. Fitness is associated with the ranking of nodes that
form parent-child links. This paper correlates the fitness ρ
with the relative ranking distance between nodes and their
parents. This is the distance w0 ∈ vi(tree) − wi between a
ranked node wi and its parent w0 ∈ vi(tree) in relation to
the maximum distance that they can have if the node i has
for parent the highest ranked node. For example, assum-
ing nodes with uniformly distributed weights in [0, 1), the
maximum possible ranking distance is approximately 1−wi.
Therefore, fitness ρ is defined as:

ρ ≈
1

nρ′

n−1∑
i=0

w0 ∈ vi(tree) − wi

1 − wi
(3)

where ρ′ is the optimum fitness computed using Algorithm 1.
The optimum fitness ρ′ depends on the topology built and
therefore it is related to the other tree properties such as the
degree-bounding1.

Finally, the instability δ() of a performance metric de-
scribes the variation of this metric during a self-organization
runtime period. Instability is calculated using the relative
standard deviation. For example, instability δ(ρ) of fitness ρ
during a period of time t̂ is defined as follows:

δ(ρ) =
1
ρ

√
1

t̂ − 1

∑
t̂−1
t=0[ρ(t) − ρ]2 (4)

Note that, minimizing instability of a performance met-
ric is a factor to detect the convergence of self-organization
according to this performance metric.

System Overview

Figure 1 illustrates the three-level architecture of AETOS.
Each level of AETOS is managed by a software agent. The
bottom level in AETOS provides a gossip-based dissemina-
tion and collection of random agent samples. These sam-
ples contain agent resources such as their network address
for communication and weights with which their nodes are
ranked. The gossiping criteria are actual gossiping con-
figurations that parameterize the bottom level and inject
the weights of the nodes that participate in the tree self-
organization. These resources together with the network ad-
dresses of the agents are continuously exchanged in a gossip
fashion. Agent samples are provided to the middle level that
performs clustering based on the proximity of their weights
defined by an adopted adaptation strategy. The structuring
criteria contain an actual adaptation feedback and other clus-
tering configurations that parameterize the adopted strategy.
Clustering provides a search space from which candidate par-
ents and children are selected and provided to the top level
responsible for coordinating the building and maintenance of
the tree topology. The agents corresponding to the candidate
parents and children are contacted for the establishment of
parent-child links. If this negotiation is successful, the tree
view is filled and is provided to applications. Finally, the tree
criteria are tree configurations containing information about
the graph properties of the built tree.

Figure 1. The AETOS middleware architecture.

1The maximum optimum fitness value corresponds to a tree or-
ganized in a star topology. In this case, every node has the highest
ranked node as a parent. In contrast, the minimum optimum fitness
value corresponds to a tree organized in an ordered list.
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Figure 2 illustrates the main concept of how AETOS per-
forms self-organization of tree topologies. Each level of AE-
TOS contains a view containing a limited number of ranked
agent samples. Each view is filled incrementally by the view
at the level below. Each node of a network has three views
that correspond to layered overlay networks. The overlay
network of the bottom level is defined by random samples of
agents collected by the bottom level. These random samples
become the input at the middle level in which they are clus-
tered to an overlay network of candidate parents and children
based on the proximity of their weights. For example, the
ranked node 0.58 has in closest proximity the ranked nodes
0.67 and 0.53. Finally, based on a selection scheme defined
by an adaptation strategy, such as the selection of the highest
ranked agents, candidate parents (0.75) and children (0.53
and 0.45) potentially fill the tree view.

Figure 2. Managing the agent views in three levels.

A more detailed illustration of the functionality of each
level follows in the next sections.

Dissemination and Collection

The bottom level of AETOS is realized by the peer sam-
pling service, a gossiping protocol introduced by Jelasity
et al. [2007]. It periodically updates ôhe random view that
is a list of limited size r containing the agent samples. These
samples are exchanged between remote agents of the bottom
level and concern the network identifiers of the respective
nodes, e.g., the IP address and the port number. For each
unique identifier of an agent, the weight wi of its node i is
included in the agent samples.

Clustering

This section illustrates the cluster-based structuring per-
formed in the middle level of AETOS.

The input of the proximity view

Searching randomly for the parent and children of each
node may not be a cost-effective approach for the self-
organization of tree topologies. Á metric based on a prox-
imity distance may be more effective. The proximity dis-
tance between a ranked node i and its input node j pro-
vided by the bottom level is defined by their ranking dis-
tance |wi − w j|. This computation indicates the proximity of
the nodes. Agent samples are structured in an ordered list
of limited size, the proximity view vi(proximity), based on
their ranking distance. Each proximity view vi(proximity)
of a node i is virtually spit in two parts containing candidate
parents and candidate children. The weight wi of a node i is
the reference point for this split: For example, nodes ranked
higher than wi are candidate parents and nodes ranked lower
are candidate children. The maximum size of the proximity
view qi of a node i is controlled by the scaling factor f and
is related to the maximum number of children ki as follows:
qi = f ∗ (ki + 1). The scaling factor determines the number
of times the proximity view is larger than the tree view.

The proximity view has random samples of ranked nodes
provided by the bottom level of AETOS. This section out-
lines the T-MAN gossiping protocol [Jelasity et al., 2009]
that performs remote clustering to improve performance
of AETOS, i.e., higher convergence speed in the self-
organization process. Nodes in T-MAN periodically ex-
change their proximity views with other agents in close prox-
imity via horizontal interactions. T-MAN is relevant in the
context of AETOS for three reasons: (i) It is a decentral-
ized self-organization mechanism. (ii) It performs organi-
zation of nodes based on their ranking distance indicating
their proximity. (iii) It requires samples of ranked nodes that
the architecture of AETOS also defines at the bottom level.
Although T-MAN is a generic topology management mech-
anism for building and maintaining various topologies based
on the ranking distance of nodes, it is not generic enough to
organize complex topologies such as the tree topologies illus-
trated in ‘Problem Description’. Furthermore, T-MAN can-
not guarantee a cycle-free topology during self-organization.

Adaptations

The agent of the middle level in node i includes in its
proximity view nodes ranked in the range [0,wi) ∪ (wi, 1)
by default. Restricting this space results in a more targeted
search for candidate parents and children given the limited
size of the proximity view. Performing exclusions of a range
of weights from the default range of weights [0,wi)∪(wi, 1) is
the approach followed to limit this search space. Figure 3 il-
lustrates the concept of such adaptations applied in the range
of ranked nodes in proximity view. Four types of adaptations
are applied:
• Reset : This adaptation defines the default range
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Figure 3. Adaptations in the range of ranked nodes in the
proximity view. (a) Reset adaptation, (b) upgrade adapta-
tion, (c) downgrade adaptation, (d) upgrade and downgrade
adaptation.

[0,wi) ∪ (wi, 1). It is applied if the proximity view remains
empty for a period of time as a result of multiple upgrade and
downgrade adaptations.
• Upgrade: This adaptation excludes nodes ranked with

low weights in favor of highly ranked nodes. The new range
is defined as (wc` ,wi) ∪ (wp` , 1) with c` and p` indexing a
child and parent respectively based on which this reconfigu-
ration is defined. This adaptation results in potentially higher
ranked candidate parents and children provided to the top
level.
• Downgrade: This adaptation excludes nodes ranked

with high weights in favor of low ranked nodes. The new
range is defined as [0,wca )∪(wi,wpa ) with ca and pa indexing
a child and parent respectively based on which this recon-
figuration is defined. This adaptation results in potentially
lower ranked candidate parents and children provided to the
top level of AETOS.
• Upgrade and downgrade: This adaptation excludes low

and highly ranked nodes and defines an in-between range
from which candidate parents and children are selected. This
new range is defined as (wc` ,wca ) ∪ (wp` ,wpa ).

The purpose of adaptations is to improve selections of
candidate parents and children provided to the top level. The
clustering criteria contain a positive or negative feedback
about the earlier provided candidate parents and children.
This feedback is associated with the applied adaptations. For
example, positive feedback can be interpreted by the middle
level as selecting higher ranked candidate parents and chil-
dren than before and therefore, positive feedback is associ-
ated with an upgrade adaptation. A ranked node, such as the
wp` , wpa , wc` and wca in the above examples is a reference
weight based on which adaptations are performed and is also

part of the clustering criteria in AETOS.

Building and Maintenance

The top level is responsible for building and maintaining
the tree topology. Self-organization is performed by coordi-
nating parent-child links that respect the graph properties of
nodes, e.g., degree-bounding. The links of the organized tree
topologies should be bidirectional. For this reason, the agents
of the top level contact the respective agents of the candi-
date parents/children provided by the middle level to estab-
lish parent-child links that respect these properties. Links are
established if and only if they are mutually accepted between
communicating agents. Furthermore, a link can be removed
by a connected node without mutual acceptance in favor of a
new link with another node. Mutual acceptance of a link cor-
responds to positive feedback whereas rejection or removal
of a link is negative feedback. This feedback is part of the
clustering criteria provided to the middle level.

Furthermore, the agents of the top level are competitive
and seek to connect with the highest ranked parent and chil-
dren. This requirement is part of the tree criteria.

AETOS introduces peer-to-peer coordination based on
four types of exchanged messages:
• Request : This message is sent to a candidate parent

(parent request) or candidate child (child request). It con-
tains agent samples of the sender agent such as the weight of
its node and its network identifier. A request is sent if and
only if the tree view is not filled or the candidate parents and
children provided by the middle level are ranked higher than
the parents and children in the tree view.
• Acknowledgment : This message is an acceptance of a

request . Given a parent request , an acknowledgment is sent
if the parent in the tree view is ranked lower than the sender
node of the parent request . Similarly, given a child request ,
an acknowledgment is sent if the children in the tree view
are not all ranked higher than the node of the sender of the
child request . The receipt of an acknowledgment follows
the filling of the tree with a new parent or child and positive
feedback to the middle level. If these actions require the re-
placement of a parent or child from the tree view, a removal
message is sent to this parent or child.
• Rejection: This message is denial of a request . For a

parent request , a rejection is sent if the parent in the tree view
is ranked higher than the sender node of the parent request .
Similarly, in case of a child request , a rejection is sent if the
children in the tree view are all ranked higher than the sender
of the child request . The receipt of a rejection follows a
negative feedback to the middle level.
• Removal : This message triggers deletion of a parent or

child from the tree view. In case of a receipt of a removal
message, negative feedback is provided to the middle level.

Appendix B illustrates the communication algorithm of
the agents in detail.
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Adaptation Strategies

The middle level of AETOS performs selection of ranked
nodes within the adaptive range of the proximity view based
on two concepts:
• Selecting candidate parents only, candidate children

only, or both: three selection options
• Selecting the highest or lowest ranked candidate parents

and children: two selection options

Figure 4. The selection schemes of the adaptation strategies.

These selection options create 23 = 8 combinations that
are the adaptation strategies of AETOS and they are illus-
trated in Figure 4. Strategies provide (i) different preference
schemes of candidate parents and children and (ii) different
schemes2 for the applicability of adaptations in the range of
ranked nodes in the proximity view as illustrated in Figure 5.

The adoption of an adaptation strategy is performed as fol-
lows:
• Static adoption: A strategy is adopted as a system pa-

rameter. In this case, a strategy is designed explicitly to serve
the self-organization of one or more specific topologies.
• Dynamic adoption: The adopted strategy changes dy-

namically during system runtime. However, the decision
for change is based on static criteria selected empirically
or based on some monitored parameters. For example, the
adopted strategy may change after some runtime period or
after a topology change, e.g., insertion of new nodes in the
network.

This paper studies these two adoption schemes.

Experimental Evaluation

AETOS is implemented and evaluated in Pro-
topeer [Galuba et al., 2009], a prototyping toolkit for
distributed systems. A concurrent implementation of AE-
TOS in the AgentScape simulation framework [Oey et al.,
2010] confirms the results of Protopeer. Table 1 summarizes

Figure 5. Adaptations applied for each feedback and adapta-
tion strategy.

the selected experimental settings. Note that multiple values
for a single parameter denote the tested variations of this
parameter in some of the illustrated experiments. The values
depicted with bold are the default ones.

A network of 1500 nodes is simulated running AE-
TOS for t(AETOS) = 400 epochs. Every epoch lasts
for T (AETOS) = 1000 ms. Protopeer initially bootstraps
nodes in a ring topology. The bootstrapping time period
is t′(AETOS) = 6 epochs and the size of the ring view
|v(ring)| = 5 for every node. Nodes are ranked with a random
weight w ∈ [0, 1).

The top level defines the number of children k = 4. Other
topologies with k = 3, 5 and a random number k of 3, 4 or
5 children for each node of the tree topology are evaluated.
Furthermore, the top level sends z = 2 number of request
messages. If the adopted strategy includes both candidate
parents and children in the proximity view, the requests are
one for each candidate type. Finally, the request messages
are sent periodically every T (top) = 1000 ms.

In the middle level, the size of the proximity view is
q = 30 with the scaling factor3 chosen to be f = 6. The
static and dynamic adoption schemes of adaptation strate-
gies are evaluated. Adaptations and the T-MAN mechanism
are enabled and disabled in some of the experiments. When
adaptations are enabled, the reseting period is chosen to be
T (reset) = 3000 ms. The alternative values of 2000, 5000,
and the case of no reseting are examined. Moreover, when T-

2In contrast to our earlier work [Pournaras et al., 2010a], the
adaptations applied by the strategies in this paper are aligned to
the selections performed for higher or lower ranked candidate par-
ents/children.

3In the case that the number of children for each node is k = 4,
the proximity view contains 6 candidate parents and 24 candidate
children as defined by qi = f ∗ (ki + 1).
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Table 1
The experimental settings for the evaluation of AETOS. The bold values are the default ones in the performed experiments.

Parameter Value
n 1500

t(AETOS) 400
T (AETOS) 1000
t′(AETOS) 6
w ∈ [0, 1) random

AETOS

|v(ring)| 5
k 3, 4, 6, varied
z 2Top Level

T (top) 1000
q 30
f 6

strategy adoption static, dynamic
T (reset) 7, 15, 30

strategy adoption static, dynamic
T (reset) 2000, 3000, 5000,∞

T-MAN inclusion enabled, disabled
t′(middle) 6

Middle Level

T (middle) 100, 200, 250, 500, 1000
r 50

view selection policy swapper
view propagation policy push-pull

peer selection policy random
Bottom Level

T (bottom) 100, 200, 250, 500, 1000

MAN is enabled, it runs with the parameters m = 40, ψ = 20,
l = 6. The role of these parameters is out of the scope of this
paper and is illustrated by Jelasity et al. [2009]. Finally, the
middle level is bootstrapped within t′(middle) = 6 epochs
and its execution period is selected at T (middle) = 200 ms.
The alternative values of 100, 250, 500 and 1000 ms are also
examined.

The bottom level is realized by the peer sampling ser-
vice [Jelasity et al., 2007]. The size of the random view is r =

50 and the execution period is T (bottom) = T (AETOS)/5 =

200 ms. Other values examined are 100, 250, 500 and 1000
ms. The values of the ‘view selection’, ‘view propagation’
and ‘peer selection’ policies are selected to maximize the
randomness and dissemination speed of gossiping. More
information about these parameters are provided by Jelasity
et al. [2007].

The evaluation of AETOS is based on the four perfor-
mance metrics illustrated in ‘Problem Description’. The op-
timum fitness of a tree for given graph properties is com-
puted in a centralized fashion as illustrated in Algorithm 1.
The system runtime is t(AETOS) = 400 epochs. The num-
ber of messages λ(level) generated by each level of AETOS
is computed as a measure of the communication cost. Fi-
nally, qualitative comparisons are performed by visualizing
the self-organized tree topologies using the JUNG visualiza-
tion library of O’Madadhain et al. [2005]. The trees are vi-

sualized in a radial layout that depicts clearer the balancing
and completeness graph properties.

Adaptation strategies

Figure 6 illustrates the convergence of connectedness for
the eight adaptation strategies. For higher readability, the
figures of this section that concern the adaptation strategies
are split in four subgraphs, (a)-(d), each showing the results
of two strategies. The order represents the performance of
the strategies, starting from the strategy with the highest to
lowest performance. Myopic, humble, bottom-up and top-
down converge to the maximum connectedness of 1 within
the first 40 epochs as depicted in Figure 6a and 6b. The in-
stability of connectedness in myopic and humble is approx-
imately 0.002. For bottom-up and top-down, instability in-
creases to 0.004 and 0.007 respectively. In contrast, greedy,
presbyopic, top and bottom follow in Figure 6c and 6d at a
lower performance. More specifically, greedy and presby-
opic converge approximately 20 epochs slower and reach an
average connectedness of 0.82. Their instability is 0.029 and
0.026 respectively. Top is even more inefficient with an aver-
age connectedness of 0.54 and an instability of 0.067. Bot-
tom does not converge and results in multiple disconnected
parent-child links.

Figure 7 illustrates the convergence of connectivity for the
eight adaptation strategies. The performance comparisons of
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(a) Myopic and humble. (b) Bottom-up and top-down.

(c) Greedy and presbyopic. (d) Top and bottom.

Figure 6. Convergence of connectedness for the adaptation
strategies.

this performance metric are similar with the ones of connect-
edness. Myopic, humble, bottom-up and top-down of Fig-
ure 7a and 7b converge to the maximum connectivity of 1 in
fewer than 30 epochs. The instability of connectivity in these
strategies is approximately 0. In contrast, presbyopic and
greedy in Figure 7c converge to an average maximum con-
nectivity of 0.95 in approximately 40 epochs with an instabil-
ity of 0.012. Despite the relative low connectivity of bottom
shown in Figure 7d, it converges to an average maximum
connectivity of 0.85 and an instability of 0 in approximately
40 epochs. This is because there is a significant number of
parent-child links formed whose nodes remain disconnected
between each other. In other words, these links remain de-
coupled. Finally, top, also depicted in Figure 7d, achieves
the lowest connectivity. The average maximum connectivity
is approximately 0.67 with an instability of 0.031.

(a) Myopic and humble. (b) Bottom-up and top-down.

(c) Presbyopic and greedy. (d) Bottom and top.

Figure 7. Convergence of connectivity for the adaptation
strategies.

Note that myopic, humble, bottom-up and top-down that
achieve the highest connectedness and connectivity do not
define highly ranked candidate parents in the proximity view
of agents. Furthermore, bottom is ineffective as selection of
the lowest candidate children is not consistent with the selec-
tion criteria of the top level that defined a preference for the
highest possible parents and children.

Figure 8 illustrates the fitness of the tree topology built
by each adaptation strategy. The performance comparisons
show different results in this case. Top-down and myopic
converge to the average maximum fitness of 0.95 in more
than 150 epochs as depicted in Figure 8a. The instability
of their fitness is 0.007 and 0.008 respectively. Therefore,
these two strategies provide the highest fitness and the slow-
est convergence, yet the fitness is higher than the fitness in
the other strategies during this convergence period. Humble
and bottom, illustrated in Figure 8b, follow with an average
maximum fitness of 0.87 and 0.86 respectively and instabil-
ity of 0. These two strategies converge in a shorter period of
time, approaching their maximum fitness in approximately
60 epochs. Figure 8c shows the results of presbyopic and
greedy. The average maximum fitness is 0.85 and 0.83 re-
spectively, converging in approximately 40 epochs. Their
instability is 0.011 and 0.018 respectively. Finally, top and
bottom-up of Figure 8d result in the lowest fitness of 0.72 and
0.65 respectively. Top converges in more than 100 epochs,
whereas the bottom-up converges in 30 epochs. In contrast
to bottom-up that has an instability of 0, top has the highest
instability of 0.025.

(a) Top-down and myopic. (b) Humble and bottom.

(c) Presbyopic and greedy. (d) Top and bottom-up.

Figure 8. Convergence of fitness for the adaptation strategies.

Note that, bottom achieves a relatively high fitness but low
connectedness and connectivity. This is because the highly
ranked nodes are preferred in the top level and therefore
they connect with the lowest ranked nodes resulting in robust
parent-child links.

The communication cost of the bottom and middle level



ADAPTIVE SELF-ORGANIZATION IN DISTRIBUTED TREE TOPOLOGIES 9

is constant and depends on the gossiping period of the peer
sampling service and T-MAN respectively. During the run-
time of these 2 gossiping protocols, agents exchange pe-
riodically 2 messages in each case as both protocols are
‘push-pull’. Furthermore, each gossiping protocol is exe-
cuted 5 times during an epoch as T (bottom) = T (middle) =

T (AETOS)/5 = 1000/5 = 200 ms. Therefore, the total
number of messages that an agent of the bottom and mid-
dle level sends during an epoch is 2 ∗ 2 ∗ 5 = 20 messages or
λ(bottom)+λ(middle) = 20∗1500 = 30000 messages for the
total number of these agents in the network. Results confirm
these estimations.

In contrast, the communication cost of the top level is in-
fluenced by the adopted strategy. Figure 9 illustrates the con-
vergence of this communication cost. All strategies converge
in fewer than 40 epochs. In Figure 9a, bottom-up minimizes
the number of exchanged messages to 0 in 30 epochs. The
communication cost of humble consumes 2100 messages per
epoch in average after its convergence. The instability of
the communication cost is approximately 0.019. Myopic and
bottom of Figure 9b converge to an average maximum com-
munication cost of 2600 and 4600 messages respectively.
The instability of the communication cost is 0.017 and 0.015
respectively. In Figure 9c, presbyopic and top-down have a
communication cost of 5300 and 5400 messages per epoch
with an instability of 0.018. Finally, greedy and top have the
highest average maximum communication cost of 5700 and
6300 messages and an instability of 0.017 and 0.02 respec-
tively.

(a) Bottom-up and humble. (b) Myopic and bottom.

(c) Presbyopic and top-down. (d) Greedy and top.

Figure 9. Convergence of messages exchanged at the top
level for the adaptation strategies.

Figure 10 shows the optimally organized topology com-
puted in a centralized fashion as shown in Algorithm 1. Ta-
ble 2 provides a visualization of the eight adaptation strate-
gies at four time points during convergence: 20th, 35th, 50th

and 350th epoch.

Figure 10. Visualization of the optimally organized tree
topology of 1500 nodes.

Visually, greedy and presbyopic result in similar topolo-
gies: Well balanced branches close to the root that become
less balanced and less complete close to the leaves of the tree.
A few disconnected branches are present. Top has the effect
of a large well balanced and connected branch disconnected
from a large number of smaller branches. Myopic, hum-
ble, and bottom-up result in significantly better connected
topologies that have, however, imbalanced branches. From
these three strategies, the imbalance of humble is the high-
est. Moreover, the topology of top-down is organizationally
the closest to the optimally organized tree topology of Fig-
ure 10. Most branches are balanced and there is a minimum
number of disconnected nodes. Finally, bottom results in a
forest with a large number of disconnected trees without a
distinction of the main tree (branch).

The effect of adaptations

The reset , upgrade and downgrade adaptations of the
proximity view contribute significantly in the achieved per-
formance of the strategies. Without adaptations, meaning
only performing selections and ignoring the feedback pro-
vided by the top to middle level, the connectedness, con-
nectivity, and fitness remain low with increased instability.
However, communication cost decreases without adaptations
as fewer connections are negotiated in the top level.

For example, the achieved connectedness without adap-
tations is approximately 20% lower for greedy and 10%
lower for myopic compared with the case in which adapta-
tions are enabled in the system. Fitness is almost double
for greedy and 20% higher for myopic when using adapta-
tions. In contrast, the communication cost with adaptations
increases 30% for greedy and more than double for myopic.

Dynamic adoption of the adaptation strategies

Results show that strategies result in performance trade-
offs. Motivated by this observation, this section shows how
strategies can be combined to collectively achieve higher per-
formance than each one individually. This section describes
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Table 2
Visualization of the adaptation strategies at four time points during the runtime of AETOS: (i) 20th, (ii) 35th, (iii) 50th and (iv)
350th epoch.

20th Epoch 35th Epoch 50th Epoch 350th Epoch

presbyopic

myopic

humble

greedy

top-down

bottom-up

top

bottom
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a number of possibilities rather than an exhaustive illustra-
tion of how adaptation strategies can be adopted dynamically.
Self-organization of a tree based on the synergy of two or
more strategies is referred to as hybrid adaptation strategy.

Hybrid strategies introduced in this section are based on
the following intuition. Certain adaptation strategies, such as
top, greedy and presbyopic cannot meet the requirement of
building a fully connected tree. They also consume a high
number of messages without approaching the fitness of top-
down or myopic. In contrast, bottom-up builds a fully con-
nected tree at a minimum communication cost but with sig-
nificantly lower fitness than the aforementioned strategies.
Therefore, the possibility of combining bottom-up with one
of the other strategies potentially results in a maximization
of connectedness, fitness and a minimization of the commu-
nication cost. This section experimentally investigates this
intuition.

Three hybrid strategies are examined: (i) top#bottom-
up ⇒ hybrid-01, (ii) greedy#bottom-up ⇒ hybrid-02, and
(iii) presbyopic#bottom-up ⇒ hybrid-03. AETOS is initi-
ated with the former strategy in each case. After the 250th
epoch, the nodes that do not have a parent, therefore they
are disconnected from the main body of the tree, switch to
bottom-up.

Figure 11 illustrates connectedness, connectivity, fitness
and communication cost of the three hybrid strategies. Note
that, all hybrid strategies inherit the property of a maximum
connectedness and connectivity from bottom-up. After the
250th epoch, both metrics converge within a short time to
the maximum of 1.0 as depicted in Figure 11a and 11b. Note
also the significant reduction of the communication cost in
Figure 11d. Hybrid-01 minimizes this cost to 0, whereas,
hybrid-02 and hybrid-03 continue generating approximately
700 and 1800 messages per epoch respectively. Fitness has
an increase of 10% and 8% for hybrid-02 and hybrid-03
respectively as shown in Figure 11c. However, this is not
the case for hybrid-01 in which adoption of bottom-up neg-
atively influences the fitness by approximately 10%.

Table 3 visualizes the three hybrid strategies at three dif-
ferent points during runtime: (i) On the 245th epoch that is 5
epochs before bottom-up is adopted, (ii) on the 255th epoch
that is 5 epochs after the dynamic adoption of bottom-up
and (iii) on the 380th epoch. This table shows the topolog-
ical transitions of the strategies in time. The disconnected
branches are connected to the leaves of the main tree form-
ing a fully connected tree. The deterioration of fitness in
hybrid-01 is explained by the long ‘lists’ of nodes attached
at the bottom of the tree. This attachment is more uniform
for hybrid-02 and hybrid-03.

Note that, hybrid strategies achieve a highly comparable
performance to top-down and myopic. Furthermore, they sug-
gest additional performance trade-offs. For example, hybrid-
02 and hybrid-03 achieve a significantly lower communica-

(a) Connectedness. (b) Connectivity.

(c) Fitness. (d) Number of messages gen-
erated by the top level of AE-
TOS.

Figure 11. The performance of the hybrid adaptation strate-
gies.

tion cost at a price of 3% − 5% lower fitness compared to
top-down and myopic.

Reseting adaptations

The reset adaptation is applied to the proximity view if
it remains empty for a period of time. Multiple upgrade
and downgrade adaptations applied may restrict the range
of ranked candidate parents and children to such an extent
that excludes all ranked nodes. This may be the case at the
beginning of self-organization in which temporary links that
are removed later on affect the proximity view of other nodes
via the applied adaptations. In this case, the system is ac-
tually ‘trapped’ in a few locally optimum parent-child links,
leaving a large number of nodes isolated with an empty prox-
imity view. Conditional and periodic reset adaptation solves
this problem.

Experimental evaluation confirms this intuition. Without
reset adaptations, connectedness achieved with greedy re-
mains lower than 0.45 for more than 160 epochs. Fitness re-
mains high as few links formed are highly robust with nodes
close to the root getting connected with the leaves of the tree
in the respective optimum topology. However, the difference
is insignificant to claim an improved fitness in the case of no
adaptations in the proximity view. When T (reset) decreases
to 5, 3 and 2 epochs, the performance metrics converge fast
as shown in ‘Adaptation strategies’.

Note that, the experimental results also show that the low-
est reseting period of T (reset) = 2 epochs results in the high-
est communication cost as the probability of sending parent
and child requests to the same nodes increases when adap-
tations are reset more frequently. For greedy, the commu-
nication cost is 2% higher for T (reset) = 2 compared to
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Table 3
Visualization of the tree topologies at three different epochs for three hybrid strategies on the (i) 245th, (ii) 255th and (iii) 380th

epoch.
245th Epoch 255th Epoch 380th Epoch

hybrid-01

hybrid-02

hybrid-03

T (reset) = 5.

Tree topologies with different graph properties

Three different tree topologies are evaluated: (i) A 3-ary
tree, (ii) a 5-ary tree and (iii) a tree with randomly selecting
3, 4 or 5 children per node. These tree topologies represent
different distribution of links among their nodes. An applica-
tion that uses a 5-ary tree may require higher computational
and network resources than a 3-ary tree, e.g., bandwidth [Tan
et al., 2005a]. Results show a clear trend for most of the
strategies. More levels result in a higher complexity meaning
that the performance of AETOS degrades as the size of the
tree view decreases. Therefore, a 3-ary tree performs worse
compared to a 5-ary tree that has a fewer number of levels.

Table 4 illustrates performance results of the eight adapta-
tion strategies for each tree topology. Fitness, connectedness
and connectivity of a 3-ary tree topology is lower and their
convergence slower for presbyopic, myopic, humble, greedy,
top-down, and top. However, the communication cost is
higher for the 5-ary tree in these strategies. For example the
fitness for greedy is ρ = 0.77 on the 380th epoch for a 3-ary

tree whereas for the 5-ary tree is ρ = 0.87. The respective
values for the rest of the strategies are ρ = 0.83 and ρ = 0.85
for presbyopic, ρ = 0.85 and ρ = 0.88 for myopic, ρ = 0.89
and ρ = 0.98 for top-down, ρ = 0.7 and ρ = 0.74 for top.
Similar trends appear for the connectedness, connectivity and
communication cost.

Finally note that the topology with random selections of
3, 4 or 5 children per node performs comparable to the topol-
ogy with a fixed number of 4 children per node concluding
that the effect of a random number of children per node is
averaged.

Adjusting the periodical executions

Relative execution periods of the three levels in AETOS
are crucial for the convergence speed and performance of
self-organization. For example, an adaptation applied in the
proximity view of the middle level requires a period of time
for updating the candidate parents and children. This is be-
cause the three levels are decentralized and interdependent
within AETOS. The update of the proximity view requires
some gossip exchanges at the bottom level to collect new
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Table 4
Performance results of adaptation strategies for different tree topologies: (i) k = 3, (ii) k = 5 and (iii) k = rand(3, 4, 5). The
values concern the (i) connectedness β, (ii) connectivity γ, (iii) fitness ρ and (iv) the number of messages λ(top). Each pair of
values refers to the 30th and 380th epoch of runtime.

presbyopic myopic humble greedy

k = 3
β 0.68, 0.81 0.99, 1.0 1.0, 1.0 0.67, 0.85
γ 0.92, 0.94 1.0, 1.0 1.0, 1.0 0.9, 0.92
ρ 0.83, 0.83 0.82, 0.92 0.83, 0.85 0.76, 0.77
λ(top) 5116, 5101 2478, 2592 1968, 1920 5737, 5777

k = 5
β 0.82, 0.91 1.0, 1.0 1.0, 1.0 0.84, 0.88
γ 0.93, 0.96 1.0, 1.0 1.0, 1.0 0.93, 0.96
ρ 0.84, 0.85 0.85, 0.95 0.84, 0.88 0.83, 0.87
λ(top) 5587, 5405 2430, 2598 2327, 2247 5575, 5683

k = rand(3, 4, 5)
β 0.78, 0.92 1.0, 1.0 1.0, 1.0 0.83, 0.88
γ 0.95, 0.98 1.0, 1.0 1.0, 1.0 0.95, 0.95
ρ 0.84, 0.87 0.83, 0.92 0.84, 0.87 0.81, 0.83
λ(top) 5313, 5296 2557, 2605 2212, 2145 5643, 5665

top-down bottom-up top bottom

k = 3
β 0.31, 0.99 0.91, 1.0 0.33, 0.56 0.01, 0.02
γ 1.0, 1.0 1.0, 1.0 0.58, 0.66 0.84, 0.84
ρ 0.8, 0.89 0.65, 0.65 0.64, 0.7 0.86, 0.86
λ(top) 5830, 5561 2, 0 6751, 6699 4329, 4234

k = 5
β 0.97, 1.0 0.5, 1.0 0.59, 0.68 0.02, 0.02
γ 1.0, 1.0 1.0, 1.0 0.66, 0.72 0.87, 0.87
ρ 0.92, 0.98 0.61, 0.61 0.69, 0.74 0.81, 0.84
λ(top) 5708, 5551 0, 0 6411, 6232 4881, 4780

k = rand(3, 4, 5)
β 0.86, 0.97 0.83, 1.0 0.46, 0.6 0.02, 0.02
γ 1.0, 1.0 1.0, 1.0 0.63, 0.68 0.88, 0.88
ρ 0.88, 0.94 0.65, 0.64 0.68, 0.72 0.84, 0.86
λ(top) 5793, 5612 4, 0 6539, 6360 4697, 4582

agent samples. For this reason, the top level should not syn-
chronize with its bottom levels.

The experimental findings confirm this. If all levels are
synchronized at 1000 ms, the maximum average connect-
edness converges at 350th epoch for greedy. However, the
convergence speed increases proportionally to the maximum
performance for this strategy as the periodical execution of
the bottom and top level decreases to 500, 250, 200 and
100 ms at a cost of a proportional increase in the number of
messages at these two levels. The number of messages ex-
changed by the top level also increases by approximately 600
messages in this range of periodical executions. This is be-
cause the proximity view is updated and therefore, there are
available candidate parents and children that are contacted
for the establishment of parent-child links. This trend is ob-
served in the evaluation of all of the strategies.

The effect of remote clustering

T-MAN enhances clustering at the middle level and there-
fore plays a crucial role for the convergence speed of the per-
formance metrics. For example, the connectedness achieved
by greedy without T-MAN is 10% less and its convergence
200 epochs slower. Similarly, the fitness achieved with
greedy by excluding T-MAN is 2% lower and 150 epochs
slower. Because of the slower update of the proximity view,
the communication cost in the top level is lower by 500 mes-
sages in every epoch.

Comparison with Related Work

In contrast to the application-level multicasting method-
ologies of Banerjee et al. [2003] and Wang et al. [2010] that
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are based on central components for managing or bootstrap-
ping a tree overlay, AETOS is designed as an application-
independent middleware. Table 5 summarizes the related de-
centralized mechanisms discussed in this section. Note that
the comparison is mainly qualitative. AETOS contributes a
more generic, modular and reconfigurable self-organization
of trees instead of performance enhancements.

Self-organization and tree optimization in related ap-
proaches is designed based on the requirements of a specific
application type or domain. Tan et al. [2005a] introduce a
combination of a bandwidth-ordered and time-ordered tree
overlay for streaming applications. The position of each node
is continuously evaluated and improved by calculating the
‘service capability contribution’ (SCC). This metric is the
product of the outbound bandwidth of a node and uptime in
the system. Based on the SCC metric, nodes are sorted by
shifting parent-children positions. In contrast, the nodes of
AETOS are ranked with an abstract weight related to appli-
cations.

The approaches of Leitao et al. [2007], Yuan and Wei
Tsang [2004], Choe et al. [2004] and Tan et al. [2005b] are
limited to building a minimum spanning tree known to mini-
mize latency in multimedia multicasting applications. These
approaches do not adopt any ordering process of nodes that
could express the heterogeneity of their performance. AE-
TOS does not explicitly optimize trees for a given underly-
ing network infrastructure. Nevertheless, it can provide such
optimization if it is instructed appropriately. Similar issues
concern tree overlays designed for optimizing distributed
database queries, e.g., range queries. In this case, trees act
as indexing structures. Load-balancing for minimizing the
computational load of nodes is the optimization applied in
this application type by Jagadish et al. [2005, 2006b] and Sa-
piecha and Grzegorz [2013].

AETOS combines proactive and reactive features in its de-
sign. Proactiveness is related to the (i) ordering of the tree to
minimize, for example, the impact of node failures and (ii)
the dynamic maintenance of the random and proximity view.
In contrast, proactive mechanisms may cause a high commu-
nication and computational cost. Fei and Yang [2007] intro-
duce a highly proactive method for maintaining a minimum
spanning tree for multicasting. Alternative back-up parents
are negotiated before departures of nodes occur. Therefore,
reconnections are rapid and the tree becomes more resilient.
However, the benefit of this high responsiveness comes with
a high bandwidth consumption. This proactive method pays
back the high bandwidth cost in case of frequent node de-
partures. If node departures are rare, the system experiences
a significant bandwidth overhead without an actual benefit
in the resilience of the tree. Alternative proactive method-
ologies for tree resilience are evaluated by Birrer and Bus-
tamante [2007]. These methodologies are based on various
schemes of redundancy: (i) cross-link, (ii) in-tree and (iii)

multiple-tree redundancy, however, communication cost may
increase significantly. Proactive and reactive components
of the epidemic broadcast trees introduced by Leitao et al.
[2007] work in synergy to provide a fast tree construction
and repair. However and in contrast to AETOS, the proxim-
ity of nodes is not considered and the formed trees are not
ordered to express the heterogeneity of nodes.

Most other related approaches [Tan et al., 2005a; Costa
and Frey, 2005; Hoai Son Nguyen and Lan, 2013; Walters
et al., 2008; Jagadish et al., 2006b] are based on adaptation
without the use of proactive back-end mechanisms. Frey
and Murphy [2008] propose a number of transformation and
rewiring strategies for reconnecting disconnected branches.
The configuration of tree connections is similar to the config-
uration which the top level of AETOS performs. However,
the adaptations of Frey and Murphy [2008] do not sort a tree
or control its graph properties required for an application.

AETOS is highly customizable as it is based on an ar-
chitecture composed of three continuously reconfigurable
levels and several adaptation strategies. The application-
dependence of most of the related approaches [England
et al., 2007; Jagadish et al., 2006b; Leitao et al., 2007;
Tang et al., 2005; Tan et al., 2005a] unavoidably results
in a low customization and optimization options. Some of
these approaches introduce additional costly protocols and
management mechanisms to improve customization of self-
organization in dynamic scenarios, e.g., custom tree repair-
ing and load-balancing.

Exploration of multiple strategies for self-organization of
trees is significantly limited in related work. Frey and Mur-
phy [2008] illustrate six repair strategies for trees. These
strategies are related to the satisfaction of application re-
quirements, e.g., node degrees, during parent-child recon-
nections in the tree. These strategies appear to influence the
tree topology in a similar way to the strategies of AETOS,
for example, forming lower or higher branches. However,
compared to AETOS, there are two fundamental differences:
(i) The AETOS agents always respect the tree criteria, such
as the maximum number of children. (ii) The adaptation
strategies do not only concern the tree repairs, but both the
building and maintenance of trees. Therefore, the adaptation
strategies are integrated to a higher degree in the core self-
organization of AETOS.

Conclusions

This paper concludes that the adaptation strategies of AE-
TOS are able to build and maintain complex self-organizing
tree topologies defined by several graph properties related
to a wide range of application requirements. Our exper-
imental findings confirm the cost-effectiveness of AETOS
by introducing and measuring a wide range of generic per-
formance metrics applicable for various applications. Self-
organization is designed as a service in contrast to other re-
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Table 5
An overview of related decentralized mechanisms to AETOS.

Self-organization Optimization Reconfigurability Applications

AETOS
gossiping, clustering,

negotiation

degree-bounding,
ordering, balancing and

completeness

three-level modularity
and adaptation

strategies
generic

Choe et al. [2004] edge changes
degree-bounding and

diameter minimization
- multicasting

Costa and Frey [2005]
DHT mapping and

breadth-first traversing
degree-bounding -

content-based
publish-subscribe

systems

England et al. [2007]
minimum spanning tree

algorithms, e.g.,
Bellman-Ford algorithm

hop counting, path
weighting

trade-offs by weighted
optimization metrics

sensor networks and
load scheduling

Fei and Yang [2007]
minimum spanning tree
algorithms, e.g., Prim’s

algorithm

degree-bounding,
proactive recovery

NATa/firewalls,
grandfathers-siblings

and uncles-granduncles
candidates

multicasting

Frey and Murphy
[2008]

negotiation protocol and
cycle prevention

degree-bounding repair strategies generic

Jagadish et al. [2005,
2006b]

join at first available
bottom node

balancing
network restructuring
and load-balancing

multi-dimensional data
indexing, exact and

range queries

Leitao et al. [2007]
pull and lazy push

gossiping strategies
hop counting

threshold-based
optimization and

gossiping parameters
broadcasting

Tan et al. [2005a]
leaf joins and sift-up

operations
bandwidth and time

based ordering
frequency of sift-up

operations
live streaming

Tang et al. [2005]

DVMRPb mechanism
over random/proximity-

based
gossiping

degree-bounding,
latency

dynamic periodical
executions

group communication

Yuan and Wei Tsang
[2004]

mesh-first protocol and
top-down construction

minimum spanning and
shortest path tree

timer for parent
selection

video streaming

a Network Address Translation. b Distance Vector Multicast Routing Protocol.

lated methodologies that (i) provide a dedicated mechanism
for an application domain and (ii) study a subset of the graph
properties introduced in this paper. The separation of organi-
zational complexity in different levels proves to be a modular
and customizable design choice for this service. The adapta-
tion strategies result in different tree topologies by exploring
different performance trade-offs. The adaptation strategies
can also be combined to compose hybrid strategies with col-
lective properties suggesting a new meta-level of abstraction
and reasoning in future work.
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Appendix A
Organizational Goal

Assume an ordered list of ranked nodes w = {w0, ...,wn−1}

under the ‘>’ relation with the respective number of chil-
dren k = {k0, ..., kn−1}. Each size ki ∈ k corresponds to the
ranked node wi ∈ w. An ordered tree T = {w0, ...,wh−1}

can be built by splitting the ordered list w in h number
of levels w0, ...,wh−1. An indexed level u − 1 of parents
wu−1 = {wp` , ...,wpa } is defined by the list of the lowest
ranked node wp` ∈ w and the highest ranked node wpa ∈ w
in this level respectively. Similarly, the lowest ranked child
wc` ∈ w and the highest ranked child wca ∈ w form the list of

ranked children wu = {wc` , ...,wca } that builds the next level
with size |wu| = gu.

A degree-bounded, ordered, balanced and complete
tree can be built in a centralized fashion according to Al-
gorithm 1. The tree is built level-by-level using a buffer of
parents p`, ..., pa and children c`, ..., ca indexing nodes in the
ordered list w. The number of children that the next level
includes is computed at the beginning (line 4-8 of Algo-
rithm 1). Next, every indexed node from the level of parents
is matched with the indexed nodes from the level of children
(line 9-19 of Algorithm 1). Therefore, the tree views can be
filled using these indices. This process repeats by increment-
ing the level of parents to level of children and recomputing
the next level of children at the next iteration (line 21 of Al-
gorithm 1). Figure A1 visualizes this incremental process.

Algorithm 1 A centralized computation of an optimally
organized tree topology with the properties introduced in
‘Graph properties and applications’.
Require: w = {w0, ...,wn−1}, k = {k0, ..., kn−1}

1: // Initialization
2: p` = pa = 0, c` = ca = 1, u = 1, g0 = 0
3: while true do
4: // Computation of the next level of children nodes
5: for i = p` to pa do
6: gu =gu +ki

7: end for
8: c` = pa + 1 = c, ca = c` + gu − 1
9: // Filling the tree views of the nodes

10: for i = p` to pa do
11: for j = c to c + ki − 1 do
12: if j > n − 1 then
13: return
14: end if
15: vi(tree) ∪ {w j} // Adding a child
16: v j(tree) = {wi} // Adding a parent
17: end for
18: c = c + ki

19: end for
20: // Incrementing the level of parents to level of children
21: p` = c`, pa = ca and u = u + 1
22: end while
Ensure: vi(tree)∀i ∈ {0, .., n − 1}

Appendix B
Top Level Interactions

Assume a ranked node wi that has in its tree view vi(tree) the
parent wp and the ordered (>) set of children {wc` , ...,wca }.
This node performs coordination with a ranked node w j us-
ing horizontal interactions between the levels of the AETOS
architecture. Algorithm 2 and 3 illustrate the peer-to-peer
coordination between the ranked nodes wi and w j.
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(a) Level-2. (b) Level-3.

(c) Level-4.

Figure A1. Centralized building of a binary, ordered, bal-
anced, and complete tree by defining the tree levels incre-
mentally from an ordered list of ranked nodes.

A request is potentially sent to a candidate parent or
child w j provided by the middle level. This request is actu-
ally sent if and only if this candidate parent/child either fills
the tree view or updates it by replacing a lower ranked node
(line 2 and 9 of Algorithm 2).

Algorithm 2 Initiation of the tree coordination.
Require: A candidate parent or child w j

1: if w j is candidate parent then
2: if wp = ∅ or w j > wp then
3: request (parent request , wi, w j)
4: return request
5: else
6: return null
7: end if
8: else // w j is candidate child
9: if |vi(tree)| − 1 < ki or w j > wca then

10: request (child request , wi, w j)
11: return request
12: else
13: return null
14: end if
15: end if
Ensure: request

The response of a node to a request depends on the
feedback that the generated clustering criteria define. Pos-
itive feedback corresponds to an acknowledgment message
and negative feedback corresponds to a rejection message.

Coordination logic includes the reactions to the re-

Algorithm 3 Completion of the tree coordination.
Require: Feedback and the ranked node w j

1: if feedback=‘positive’ then
2: acknowledgment (wi, w j)
3: return acknowledgment
4: else // feedback=‘negative’
5: rejection (wi, w j)
6: return rejection
7: end if

Ensure: acknowledgment or rejection

ceived messages. These reactions are shown in Algorithm 4.
The rest of the algorithms illustrate the reactions to each of
the received messages.

Algorithm 4 The reactions to received messages.
Require: A message from a ranked node w j

1: if message=parent request then
2: execute Algorithm 5
3: else if message=child request then
4: execute Algorithm 6
5: else if message=acknowledgment then
6: execute Algorithm 7
7: else if message=rejection then
8: execute Algorithm 8
9: else if message=removal then

10: execute Algorithm 9
11: else
12: return null
13: end if

Algorithm 5 outlines the reaction to a received par-
ent request . There are two conditions under which a parent-
child link is established. In the first condition (line 1 of Al-
gorithm 5), the tree view of the node wi is not full. In the
second condition (line 2 of Algorithm 5), the lowest ranked
child ca is replaced with the ranked node w j (lines 3-9 of
Algorithm 5) if it is ranked lower than w j. The link estab-
lishment follows an acknowledgment message (lines 7-8 of
Algorithm 5), whereas in case none of these conditions are
met, a rejection message (lines 14-15 of Algorithm 5). Note
that in case of an acknowledgment , positive feedback and
the weight w j is contained in the message (lines 10-12 of
Algorithm 5).

Algorithm 6 illustrates the reactions to a received
child request message that follow the same concept to the
reactions of a received parent request .

Algorithm 7 illustrates the reactions to a received ac-
knowledgment message that results in the establishment of a
new parent-child link. The sender node w j, as a new parent or
child, is added in the tree view vi(tree) of node wi (line 7 and
17 of Algorithm 7). A potential removal message is sent if a
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Algorithm 5 The reactions to a parent request message.
Require: parent request message from a ranked node w j

1: if |vi(tree)| − 1 < ki or w j > wca then
2: if |vi(tree)| − 1 = ki and w j > wca then
3: removal (wi, wca )
4: send removal
5: {wc` , ...,wca } \ wca
6: end if
7: acknowledgment (wi, w j)
8: send acknowledgment
9: {wc` , ...,wca } ∪ w j

10: feedback=‘positive’
11: clustering criteria (feedback, wca )
12: return clustering criteria
13: else
14: rejection (wi, w j)
15: send rejection
16: return null
17: end if
Ensure: clustering criteria

Algorithm 6 The reactions to a child request message.
Require: child request message from a ranked node w j

1: if wp = ∅ or w j > wp then
2: if wp , ∅ and w j > wp then
3: removal (wi, wp)
4: send removal
5: wp = ∅
6: end if
7: acknowledgment (wi, w j)
8: send acknowledgment
9: wp = w j

10: feedback=‘positive’
11: clustering criteria (feedback, w j)
12: return clustering criteria
13: else
14: rejection (wi, w j)
15: send rejection
16: return null
17: end if
Ensure: clustering criteria

node is replaced by w j (lines 3-4 and 13-14 of Algorithm 7).
A positive feedback and the new ranked node added in the
tree view form the clustering criteria for adapting the middle
level of AETOS (lines 8-9 and 18-19 of Algorithm 7).

The reactions to a received rejection message do not
introduce any changes in the tree view as illustrated in Al-
gorithm 8. However, a rejection message triggers clustering
criteria containing a negative feedback and the weight of the
sender node w j.

Algorithm 7 The reactions to an acknowledgment message.
Require: acknowledgment message from a ranked node w j

1: if w j > wi then
2: if wp , ∅ then
3: removal (wi, wp)
4: send removal
5: wp = ∅
6: end if
7: wp =w j

8: feedback=‘positive’
9: clustering criteria (feedback, w j)

10: return clustering criteria
11: else // w j < wi

12: if |vi(tree)| − 1 = ki then
13: removal (wi, wca )
14: send removal
15: {wc` , ...,wca } \ wca
16: end if
17: {wc` , ...,wca } ∪ w j

18: feedback=‘positive’
19: clustering criteria (feedback, w j)
20: return clustering criteria
21: end if
Ensure: clustering criteria

Algorithm 8 The reactions to a rejection message received
in the top level of AETOS.
Require: rejection message from a ranked node w j

1: feedback=‘negative’
2: clustering criteria (feedback, w j)
3: return clustering criteria

Ensure: clustering criteria

Finally, the Algorithm 9 shows that a ranked node w j

is removed from the tree view if a removal message is re-
ceived. A removal of a node from the tree view is always
accompanied with clustering criteria containing a negative
feedback.

Algorithm 9 The reactions to a removal message.
Require: removal message from a ranked node w j

1: if w j > wi then
2: wp = ∅
3: else // w j < wi

4: {wc` , ...,wca } \ w j

5: end if
6: feedback=‘negative’
7: clustering criteria (feedback, w j)
8: return clustering criteria

Ensure: clustering criteria
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The condition of delivering the tree view is controlled
by the tree criteria provided by the application. Examples
of criteria that can be engaged are a periodic delivery or a
minimum rate of changes occurring in the tree view.

Finally, note that the coordination performed in
the top level assumes a synchronous communication for
the matters of simplicity in the illustration of the algo-

rithms. Nonetheless, a concurrent version of the top level
in AETOS is implemented in the simulation framework of
AgentScape [Oey et al., 2010]. In contrast to the top level,
the gossiping realizations of the bottom and middle level
tolerate the lack of concurrency with various solutions dis-
cussed by Jelasity et al. [2007].


