
Enabling Fine-Grained Edge O�loading for IoT
Vi�orio Cozzolino

Technical University of Munich
Aaron Yi Ding

Technical University of Munich

Jörg O�
Technical University of Munich

Dirk Kutscher
Huawei Technologies

ABSTRACT
In this paper wemake the case for IoT edge o�oading, which strives
to exploit the resources on edge computing devices by o�oading
�ne-grained computation tasks from the cloud closer to the users
and data generators (i.e., IoT devices). �e key motive is to enhance
performance, security and privacy for IoT services. Our proposal
bridges the gap between cloud computing and IoT by applying
a divide and conquer approach over the multi-level (cloud, edge
and IoT) information pipeline. To validate the design of IoT edge
o�oading, we developed a unikernel-based prototype and evaluated
the system under various hardware and network conditions. Our
experimentation has shown promising results and revealed the
limitation of existing IoT hardware and virtualization platforms,
shedding light on future research of edge computing and IoT.

1 MOTIVATION
Edge computing and Internet of �ings (IoT) have become closely
coupled in recent developments. IoT was initially conceived as
extending the Internet with a new class of devices and use cases
(e.g., constrained networks, personal devices). First architectures
and frameworks introduced the notion of cloud-connected IoT de-
ployments, with the assumption that most/all IoT edge networks
need to be connected to the cloud, for example through some edge
gateway and tunnel approach.

However, latest research and real application/deployment exper-
ience is challenging this slightly ossi�ed model, because a strict
dependency of cloud platform is not o�en desirable when: a) edge
networks create data that needs to be accessed and processed loc-
ally, b) delay sensitivity does not allow for piping everything do
the cloud and back, or c) the amount of data is too large to transfer
to the cloud (in real-time) without causing congestion on backhaul.

With the di�usion of IoT networks and infrastructures, the risk
of leaving behind and underestimating security threats is notable.
�is is a major concern when the information �ows from IoT to
the cloud is �lled with highly sensitive information about end-
users (e.g., Smart Health, Smart Grid). �erefore, adding additional
security layers outside the cloud infrastructure could help enforce
a tighter control over the IoT ecosystem. Performance and multi-
tenancy supports would also bene�t by adding intermediate units at
the edgewhich possess local knowledge about the available physical
resources. �ereby, we can optimize and maximize performance
without requiring the cloud to oversee the entire process.

E�ectively, IoT turns the traditional Internet tra�c (data is primar-
ily pushed downstream from the cloud to the consumer devices, by
leveraging CDN etc.) around in a way that data gets produced at
the edges, is consumed at the edges and (at least partially) sent to
cloud-based platforms. �is change of tra�c model requires new

FADES

Cloud

Application Logic

Edge 
O�oading

IoT ResourcesEdge Device

Data 
Acquisition

Figure 1: Edge O�loading

infrastructure support: edge computing could be the platform for
that. In this regard, edge computation o�oading can help build this
multi-level (cloud, edge and IoT) information pipeline. Edge o�oad-
ing, as shown in Figure 1, revisits the conventional cloud-based
computation o�oading where mobile devices resort to resourceful
servers to handle heavy computation [2], to cater for the demands
of IoT services. �erefore, our approach is reversed: we promote a
paradigm where computation is sent by the server to constrained
devices at the edge to take advantage of data locality. �e key is to
understand what to o�oad and this is strictly related to how the
IoT is built.

Edge o�oading is the perfect recipe to close the gap between
cloud and IoT by applying a divide and conquer approach. Regard-
less of the back-end services, devices deployed at the edge of the
network have to execute simple operation on data locally avail-
able. �erefore, by spli�ing a complex application into manifold
simple and single-purpose tasks we can ship them in the shape
of lightweight containers. Such approach is enabled by exploiting
hardware resources via virtualization techniques.

Virtualization and containerization technologies paved the way
to e�ciently exploit resources for multi-tenant environments. How-
ever, some of the existing technology is not applicable to IoT and
dynamic scenarios. For example, ETSI MEC which is based on VMs
and HTTP(S) tra�c interception could be too heavy-weight and
coarse-granular. What IoT needs is a more �exible, �ne-grained,
and modular platform. �erefore, we advocate the utilization of
even lighter solutions like unikernels [1] [4] to help minimize as
much as possible the transferred functionalities in order to, among
other bene�ts, harden the system security and resiliency.

Our proposal is a modular system architecture designed to run
compact, single purpose tasks on resource constrained edge devices.
Instead of deploying full applications, our system aims at minimiz-
ing the o�oaded code to edge devices in order to reduce the a�ack
surface and optimize available resources utilization.

Given the existing work on computation o�oading [2], our work
di�erentiates itself by accurately tailoring the o�oaded code/tasks



Processed Data (Mb)
0 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e 
(s

)

0

5

10

15

20

25

30

35
Cubietruck
Intel NUC
Dell PowerEdge

Data not available locally

Data locally available 

(a) Data Locality

Cubi
etr

uck

Inte
l N

UC

Dell 
Pow

erE
dge

Cubi
etr

uck

Inte
l N

UC

Dell 
Pow

erE
dge

Cubi
etr

uck

Inte
l N

UC

Dell 
Pow

erE
dge

Cubi
etr

uck

Inte
l N

UC

Dell 
Pow

erE
dge

Ti
m

e 
(s

)

10-1

100

101

102
Launch Unikernel
Effective Computation
DRB-to-DMF Transmission Overhead
Data Acquisition Overhead

~1.5 Mb

~3.0 Mb

~6.0 Mb

~12.0 Mb

(b) System Performance

Max RAM Memory (Mb)
32 64 128 256 512

M
ax

 p
ro

ce
ss

ab
le

 d
at

a 
(K

b)

0

5000

10000

15000 ARM
x86_64

(c) Data processing limits (memory)

in order to match the hardware constraints of the hosting device in
IoT. Among other issues, we aim at solving the problem of multi-
tenancy combined with resource utilization optimization.

2 TOWARD FINED-GRAINED EDGE
OFFLOADING

As depicted in Figure 1, our design introduces an intermediate
unit to enrich and augment the interaction between IoT resources
and applications running in the cloud. �e IoT resources o�er
physical capabilities to interact with the environment and carry
out dedicated tasks. �e back-end applications interact with our
system by o�oading parts of their operation logic. In our design,
we consider the cloud as a repository of deployment-ready tasks
designed for di�erent IoT scenarios and purposes. For instance,
the pollution control in smart cities is achieved by querying the
pollution sensors, aggregating the information at the edge, and
sending the �nal result to the cloud. In this regard, our system
resembles a middlebox and oversees groups of IoT devices based
on spatial proximity as Figure 1 indicates.

Our prototype is a unikernel-based system hosted by Xen hy-
pervisor, which can be deployed across various IoT programmable
boards. Our tool of choice is the MirageOS library operating system,
which is speci�cally designed to build modular systems and runs
natively on Xen [3]. �e majority of functionalities and compon-
ents are embedded into unikernels, and one orchestration module
is developed in Python.

3 EXPERIMENTATION
�e goal of our experimentation is to tackle the following questions:
Q1. How much can edge deployed services bene�t from data local-
ity? Q2. How does our system perform under di�erent workloads?
Q3. How di�erent architectures (x86, ARM) a�ect the perform-
ance of MirageOS? What are the unikernel PVM memory sizing
requirements in relation to the amount of data to be manipulated?

For our tests, we selected three di�erent devices: a Cubietruck,
an Intel NUC and a Dell PowerEdge R520. We gleaned the data for
the tests from our Intel Edison IoT testbed. �e testbed is composed
by 5 Intel Edison deployed in di�erent o�ce rooms on campus.
Each board continuously collects environmental data through a set
of sensors (humidity, temperature, light intensity, audio).

Figure 2a highlights how data locality can noticeably in�uence
the system performance. Whenever the cloud application has to
retrieve information from the edge, no ma�er how powerful it is,

the amount of time required to fetch the data is much larger than
o�oading the computation to the edge device.

Figure 2b shows a detailed breakdown of the execution time
for a task in our prototype. Four major factors add to the overall
execution time. �e factor of retrieving data from the edge only
a�ects the scenario where the Dell PowerEdge server has to retrieve
data from a remote network. �e bars are grouped by amount
of data to be processed. For example, the �rst group shows the
performance for each device type given a payload of 1.5Mb.

�e results of Figure 2a and 2b show that the presence of a su�-
ciently powerful device at the edge of the network combined with
data locality makes edge o�oading the best choice. Particularly, the
Intel NUC outperforms the Dell PowerEdge while the Cubietruck is
highly hindered by the overhead of intra-unikernel transmissions.

Figure 2c further shows the correlation between pre-allocated
RAM andmaximum amount of processable data. In our tests, we no-
ticed that the device resources doesn’t a�ect the maximum amount
of processable data. Hence, the graph presents a generic comparison
between ARM and x86.

4 DISCUSSION AND FUTUREWORK
�e underlying idea of IoT edge o�oading is to bridge the gap
between complex applications running in the cloud and simple
operations running at the edge. It’s in this gap that we spot the
opportunity to utilize lightweight virtualization e.g., unikernels, as
an ideal vessel to ship single-purpose tasks for achieving modu-
larity, �exibility and multi-tenancy. �e experimentation over our
prototype system has yielded useful insights for future research of
IoT. Our next steps include: 1) evaluate our system scalability when
running multiple o�oaded task simultaneously, 2) extend and test
our prototype with an industry-driven use case and 3) develop a
programming model matching our system design.

REFERENCES
[1] Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo Kim,

and Karsten Schwan. 2016. Fast, scalable and secure onloading of edge functions
using AirBox. In IEEE/ACM Symposium on Edge Computing (SEC). IEEE.

[2] Kumar et al. 2013. A survey of computation o�oading for mobile systems. Mobile
Networks and Applications 18, 1 (2013), 129–140.

[3] Madhavapeddy et al. 2013. Unikernels: Library operating systems for the cloud.
In ACM SIGPLAN Notices, Vol. 48. ACM.

[4] Madhavapeddy et al. 2015. Jitsu: Just-In-Time Summoning of Unikernels.. In
Proceedings of NSDI ’15.

2


	Abstract
	1 Motivation
	2 Toward Fined-grained Edge Offloading
	3 Experimentation
	4 Discussion and Future Work
	References

