
Securebox: Toward Safer and Smarter IoT Networks

Ibbad Hafeez†, Aaron Yi Ding‡, Lauri Suomalainen†

Alexey Kirichenko?, Sasu Tarkoma†
†University of Helsinki, ‡Technical University Munich, ?F-Secure Corporation

ABSTRACT
In this paper we present Securebox, an affordable and
deployable platform for securing and managing IoT net-
works. Our proposal targets an alarming spot in the fast
growing IoT industry where security is often overlooked
due to device limitation, budget constraint, and devel-
opment deadline. In contrast to existing host-centric
and hardware-coupled solutions, Securebox empowers a
cloud-assisted “charge for network service” model that
is dedicated to budget and resource constrained IoT en-
vironments. Owing to its cloud-driven and modular
design, Securebox allows us to 1) flexibly offload and
onload security and management functions to the cloud
and network edge components; 2) offer advanced secu-
rity and management services to end users in an afford-
able and on-demand manner; 3) ease the upgrade and
deployment of new services to guard against abrupt se-
curity breakouts. To demonstrate Securebox1, we have
implemented the platform consisting of a plug-n-play
frontend, a Kubernetes-powered backend cluster, and a
smartphone mobile application. Based on the testbed
evaluation, we show that Securebox is robust and re-
sponsive. Its collaborative and extensible architecture
enforces rapid update cycles and can scale with the
growing diversity of IoT devices.

Keywords
IoT, Cloud-Assisted Security, SDN, Docker

1. INTRODUCTION
Internet of Things (IoT) has transformed from a buz-

zword to a reality in recent times. With the trend of
integrating IoT to home, office and enterprise networks,
the number of connected IoT devices is projected to
reach tens of billions in the next few years.

Due to the security and privacy risks exposed by IoT
devices, it is crucial to protect IoT networks. How-
ever, it has become increasingly difficult to secure IoT
networks due to the its scale, diversity of devices and
deployed environments, and lack of expertise and re-
sources for IoT users.

1Demo video: https://www.cs.helsinki.fi/group/close/
secDemo/securebox.html

It is clear that the conventional security mechanisms
from IT domain (e.g., antivirus, firewalls) are insuffi-
cient to address the challenges posed to IoT networks
[7]. The IoT devices are typically developed by fast
moving teams in large enterprises or independent star-
tups that have limited budget and hard deadlines to
launch their devices. Their software design do not fol-
low strict security guidelines. More alarmingly, these
devices are often resource constrained, which compli-
cates the adoption of existing host-centric security so-
lutions. The large number of IoT manufacturers also
make it hard to enforce cross-device security policies
and life cycle support (e.g., security patches).

As typical IoT users (e.g., home users with insuffi-
cient expertise to manage and update IoT devices by
themselves) have limited budget to deploy expensive
hardware-based security solutions, there is an urgent
demand for an affordable solution that is flexible and
can scale to the exponential growth of IoT installment.

In this paper, we present Securebox, a cloud-assisted
platform dedicated to budget and resource constrained
IoT environments. It combines the advantages of SDN
and NFV (i.e., Docker container) to offer management
and security services. Our main contributions can be
summarized as follows:

• We concretize the concept of outsourcing home
network management and security functionalities
via Securebox. It enables a cloud-assisted “charge
for network service” model dedicated to budget
and resource constrained IoT environments. To
the best of our knowledge, Securebox is the first
platform dedicated to IoT networks that allows
IoT users to subscribe various security and man-
agement services in an on-demand manner. Our
solution addresses several limitations of current
state of the art and can be deployed incrementally
in the existing infrastructure.

• Through experimental measurements, we demon-
strate the applicability of the solution. The obser-
vations and lessons from our experimentation serve
as valuable input for the community to avoid po-
tential pitfalls in system implementation, and shed
lights on the future development and deployment.

https://www.cs.helsinki.fi/group/close/secDemo/securebox.html
https://www.cs.helsinki.fi/group/close/secDemo/securebox.html

In the rest of the paper, we illustrate the design and
implementation of Securebox in Section II and present
our evaluation2 in Section III. We further describe the
related work in Section IV and conclude in Section V.

2. THE SECUREBOX APPROACH
To tackle the challenges in IoT environments, we pro-

pose a new platform for improving security and man-
agement in these networks. It consists of two primary
components, Securebox Frontend (SF) and Security and
Management Service (SMS)3. The platform facilitates
a set of cloud-based security and management services,
including traffic analysis, device state and user prefer-
ence management, and automated security updates. It
is designed to scale for deployment in various networks
ranging from SOHO to enterprise environments.

2.1 Securebox Frontend
Securebox Frontend (SF) is a programmable gateway

for securing devices connected to the network. It applies
SDN to dynamically configure the network policies for
each device based on its context and security prefer-
ences. Figure 1 presents the internal architecture of SF
which consists of an SDN controller managing the traf-
fic from devices connected to wired/wireless interfaces,
a local policy database (pol-db) as a cache for security
policies, and a management console for user interaction
accessible via smartphone or web application.

SF acts as a security enforcer at the network edge,
which uses SMS to perform traffic analysis operations,
maintain user and device state etc. SF provides a num-
ber of features including device isolation, controlling de-
vice to device (D2D) communications, device discovery
and profiling etc. SMS assists SF in managing and au-
tomation of all these features to minimize the need of
user intervention.

SF is designed to be lightweight, low cost and easy to
deploy. Therefore, it offloads traffic analysis and state
management tasks to SMS. SF requests SMS to perform
desired traffic operations on live-traffic or connection
metadata information. The security policies received in
response to these requests are cached locally to mini-
mize redundancy. This approach reduces the latency
experienced by the user and improves the cost efficiency
and scalability of the platform.

Any connection request from a connected device to a
remote destination is intercepted by SF. It checks pol-
db for a security policy matching the requested connec-
tion. If a matching policy is found, the connection is
allowed/blocked depending on the policy decision. If
not found, SF requests SMS to analyze this connection
request. SMS responds to this request with a security
policy (with allow/block decision) which is enforced in

2High resolution image are available at http://goo.gl/
PN2nv9
3We leave out the design details of smartphone appli-
cation due to page limit.

Management

console

SDN Controller

Security and

Management Service

Policy

Database

PC

Workstation

Laptop

Figure 1: Securebox frontend internal architec-
ture.

the network and cached in pol-db for later use. SF also
receives periodic security policy updates from SMS to
increase policy hits for upcoming connection requests.

All policies received from SMS have an associated
time-to-live (ttl), which is refreshed every time a policy
is used. If the ttl expires before policy is reused, it is
removed from pol-db. This prevents the ballooning of
pol-db size and lookup time.

SF can be configured to use any SMS and correspond-
ing services depending on user preference. The manage-
ment console is provided via a smartphone application
to improve user experience. This application provides
security ranking for connected devices based on device
activity. It also generates warnings when a suspicious
activity is detected and quarantined, to increase user
awareness about device and data security.

2.2 Security and Management Service
SMS is a flexible and highly scalable alternative to

hardware based middleboxes used for network security.
It deploys (virtual) software middleboxes for analyzing
user traffic and provides automated configurations up-
dates for SF to prevent recently discovered attacks in
edge networks. SMS also supports a number of other
services including malware, botnet, spam detection etc.

SMS is designed to assist SF and enable the “charge
for network service”model through cloud-based services.
Figure 2 shows the architecture of SMS where cloud
manager is responsible for handling traffic analysis re-
quests from SFs. Upon receiving a new analysis request,
cloud manager validates the request using certification
server.

Based on user preferences, cloud manager either checks
database to find a matching security policy for requested
metadata and return this policy to SF where it is cached
and enforced in the network. Otherwise, it requests
middlebox manager to provide a middlexbox instance to
handle the service request. User can tunnel their traffic
through this middlebox for analyzing live traffic. SMS
also maintains state-aware live replicas for cloud man-

http://goo.gl/PN2nv9
http://goo.gl/PN2nv9

SOHO

Threat Analysis Service

Malware Analysis Service

Middlebox

Manager 1

Certification Server

Cloud Manager
DB 1

DB 2

IPS

FW

IDS

IPS

Backup cloud manger

Middlebox

Manager 2

Internet

SecureBox

Figure 2: Architecture for cloud-based Security
and Management Service.

ager and middlebox instances for fault tolerance and
minimizing service downtime.

SMS receives large amount of information from all
connected SFs. It combines this information with knowl-
edge from external sources e.g. virus signature databases,
malware databases etc. to run various analysis services
and detect new threats. This approach helps in detect-
ing the tiny traces of malicious traffic which usually goes
undetected through the traditional network perimeter
security systems. Based on the aggregated knowledge,
SMS generates security policies to prevent newly dis-
covered networks attacks. These security policies are
sent via pol-db updates to SFs.

SMS empowers a collaborative approach to minimize
the chances of an attacker using same techniques or
compromised machines to launch successful attacks against
disjoint networks. Our results have shown that the col-
laborative approach significantly minimizes the risk of
network attacks by sharing attack related information
across different networks.

Policy-DB updates Policy database updates are
generated by aggregating the information obtained from
the various analysis services shown in Fig. 2. These
updates consist of frequently accessed security policies.
Therefore, sending these policies to all SFs will result in
handling most of the traffic locally. It will minimize the
latency experienced by the users and the load on SMS
as well.

In the proposed system design, high priority policies
are immediately updated to the SFs whereas policies
having less priority are bundled together and sent to the
SF during hours of less network activity e.g. nighttime.

2.3 Prototype
We have implemented a prototype system and tested

it for a number of scenarios to evaluate system per-
formance. In this section, we present implementation
details about SF and SMS.

2.3.1 Securebox Frontend
We have implemented two different variants of SF us-

ing Raspberry-PI (R-PI) i.e. low cost ($35) small form
factor computer, and Fit-PC3 with better hardware re-
sources costing $533. Our evaluation results show that
the design of Securebox allows us to use minimal hard-
ware without taking a performance hit. Results dis-
cussed in Section 3 show that both R-PI and Fit-PC3
based versions are able to achieve similar performance
and user experience.

We have written a new module in Floodlight SDN
controller for Securebox, which intercepts all traffic to
perform traffic filtering, device management and other
Securebox operations. This module offers REST APIs
for external communication with SMS, smartphone or
web applications. We have used hostapd to setup R-PI
as Wi-Fi AP. Pol-db is currently setup using JSON file
but it can also use SQLite or NeDB.

2.3.2 Security and Management Service
We have implemented SMS from the scratch using

Flask Framework 4. SMS provides management and
security services for user, device and SF. It provides de-
vice and user registration, setting up preferences, con-
textual policies for device and Securebox-based security
and management etc. via web or smartphone applica-
tion.

We have deployed SMS (application module and mid-
dlebox instances) in our laboratory on Kubernetes clus-
ter using Docker containers. We have written custom
APIs for SMS to communicate with Kubernetes clus-
ter for dynamic provisioning and state management of
middlebox instances. Our evaluation results show that
SMS can be deployed using commodity hardware.

We also implemented a smartphone application to al-
low users to interact with Securebox platform. It pro-
vides information for all user device, their security rat-
ing, associated risks and threats, data used etc. Users
can also configure their preferences as high level com-
mands e.g. enable parental control on a device, limit
network connectivity for guest devices etc. via smart-
phone application. SMS also generates notifications for
the users about current state of their network using this
application.

3. EVALUATION
This section gives a detailed discussion over system

performance in terms of user experience and scalability.
For testing purpose, we have setup Kubernetes cluster
using Dell Optiplex 960 workstations. We deploy SMS
and middleboxes (custom written dynamic IP blocking
service and SNORT [5]) using Docker containers on this
cluster.

3.1 Latency
4http://flask.pocoo.org/

Latency is very crucial for end users and deployabil-
ity, as it can critically affect user’s experience for any
system or service. The proposed system is suscepti-
ble to increase the latency experienced by the user as
the traffic analysis tasks are offloaded to remote service.
Section 2 lists a number of design choices adopted for
Securebox to minimize the impact on latency.

L =

n∑
i=1

li + bl (1)

In Eq. 1, L is the total latency experienced with
Securebox setup and bl is the baseline (using no Secure-
box) latency between client and an online webserver.∑n

i=1 li is the total latency added by Securebox (while
getting a security policy for the requested connection).
When a matching policy is found in pol-db,

∑n
i=1 li is

less than 80µ seconds at 229.54MB/s using a Micro
SD storage card in R-PI. Combining policy database
updates and local pol-db helps minimize latency by in-
creasing chances to find policy hits in local cache.
li is the latency introduced by each operation per-

formed in traffic request analysis process e.g. connectiv-
ity to SMS, request verification, database lookup, mid-
dlebox provision etc.

L =

k∑
i=1

li +

n∑
j=k

lj (2)

L = l1 + l2 + l3 + ...+ lk +

n∑
j=k

lj (3)

Equation 3 expand
∑n

i=1 li where li, i ε {1, ..., k}, k ≥
2 are the latencies which can be bounded e.g. l1 is the
latency between Securebox and central server, l2 is the
time taken for request verification using certification au-
thority, l3 is the time taken by database lookup oper-
ation for relevant security policies.

∑n
j=k lj = 0 when

traffic is not analyzed using any middlebox or traffic
analysis service.
lj , j ε {k, ..., n} are the latencies for middlebox oper-

ations. These latencies vary according to user prefer-
ences e.g. the latency would be different when traffic is
not processed in any middlebox compared to when it is
processed in FW, IDS and malware analysis service.

L = dCe+

n∑
j=k

lj (4)

Equation 4 combines all latencies which can be bounded
into C. We try to minimize C by changing SMS design,
operations sequence etc. In this section, we evaluate
our system prototype in a number of scenarios to study
the impact of latency caused by the system on user ex-
perience.

3.1.1 Internet browsing

Web browsing is a common use-case for SOHO users
deploying IoT and its experience is greatly affected by
latency. It is known that increased latency can cause a
significant decrease in user satisfaction and affect traffic
directed to the service [3].

Figure 3a shows the CDF plot for the time taken to
load top 1000 websites ranked by Alexa (as of 31st July
2016). It shows that Securebox only increases latency
by ≤ 20% which is not substantial in terms of com-
mon user experience e.g. Securebox increases latency
for Youtube5 to 3.81± 0.25 ms compared to 3.53± 0.30
ms using traditional network setup.

0 5 10 15 20 25 30 35 40 45

HTTP Page load Time (s)

0

100

200

300

400

500

600

700

800

900

N
um

be
r

of
w

eb
si

te
s

Page load times for Alexa Top 1000 websites

Without Securebox
With SecureBox

(a)

0 50 100 150 200

Time (s)
0

100

200

300

400

500

La
te

nc
y

(m
s)

google.com
youtube.com
facebook.com
wikipedia.org

weibo.com
twitter.com
google.co.in
google.co.jp

tabobao.com
linkedin.com
instagram.com
reddit.com

(b)

Figure 3: Comparison of latency experienced dur-
ing web browsing. (a) CDF plot for HTTP page load
times for Alexa Top 1000 websites. (b) Latency expe-
rienced when browsing top websites with and without
using Securebox.

Figure 3 shows the latency experienced by the user
when he first browses a website (i.e. without pol-db
cache). Once the policies are cached in pol-db, user will
experience the same latency as experienced in normal
setup without Securebox.

Figure 3b further shows the latency experienced dur-
ing browsing of individual websites. Again, the latency
increased only when webpage was requested for first
time and subsequent requests had (almost) no added
latency because all requests were addressed locally us-
ing pol-db.

The (extra) latency introduced by Securebox setup
is nominal because we only use minimal data from the
connection requests and analyze it using lightweight ser-
vices. Equation 1 shows that overall latency is directly
related to the kind of analysis performed in the cloud
e.g. running DPI on live traffic will introduce much high
increase in latency. However, these results show that the
latency introduced by communicating with SMS (and
internal operations), is very small compared with the
latency experienced due to traffic analysis using mid-
dleboxes e.g. IDS/ IPS etc.

3.1.2 VoIP performance
VoIP is another use-case where user experience is

greatly affected by latency. We have tested our proto-

5www.youtube.com

type using Skype6, which is a popular VoIP application.
We have setup two different scenarios in which either or
both of users (i.e. Alice and Bob) use Securebox-based
network setup and we compare the jitter experienced
in each of these scenarios with the jitter experienced
in baseline scenario where both of them use traditional
network setup.

0 60 120 180 240 300 360 420

Time (s)

0

10

20

Ji
tt

er
(m

s)

Without Securebox (MOS=4.2)
With Securebox (MOS=4.1)

(a)

0 60 120 180 240 300 360 420

Time (s)

0

10

20

Ji
tt

er
(m

s)

Without Securebox (MOS=4.2)
With Securebox (MOS=4.1)

(b)

Figure 4: Performance evaluation for VoIP per-
formance when using Securebox.

Figure 4a and 4b show that intially the jitter was
high because the connection requests were analyzed by
SMS during call setup and once the SF receives secu-
rity policies from SMS, the jitter experienced is same
as that of traditional network where Securebox is not
in use. We achieve MOS score ≥ 4 in both setups which
shows that Securebox supports VoIP applications with
excellent QoE.

3.1.3 File transfer performance
Phishing attacks, where an attacker sets up fake web-

pages (similar to original webpage) to redirect users
to compromised server hosting malicious content which
can infect user machines. Securebox actively inspects
connection requests and blocks any such attempts to
connect user to untrusted websites setup for phishing
attacks.

While preventing users from phishing attacks, Secure-
box introduces a slight delay in file transfers as it an-
alyzes the sources of this data. We have tested our
system to identify the amount of delay Securebox intro-
duces during file transfer over FTP/HTTP protocol.

3.1.4 Using FTP/HTTP protocol
We have compared the time taken to download a file

with Securebox-based network setup and with tradi-
tional network setup. The files were downloaded from
publicly available servers on the Internet. Figure 5a
shows that Securebox only introduces a slight increase
(≤ 1%) in completion time. The difference is little
because in general each file is downloaded from (logi-
cally) single server using parallel connection, therefore,
Securebox only needs to analyze few data sources. Se-
curebox then caches the security policy locally and no-
more analysis requests are made unless the data source
changes.

6www.skype.com

File1 File2 File3 File4 File5 File6 File7 File8
0

200

400

600

800

1000

T
im

e
(i

n
se

co
nd

s)

With Securbox (fitPC) With Securebox (R-PI) Without Securebox

(a)

0 50 100 150 200 250 300
0

20

40

60

80

100

U
sa

ge
(%

)

Instance 1

0 50 100 150 200 250 300
0

20

40

60

80

100

U
sa

ge
(%

)

Instance 2

0 50 100 150 200 250 300

Time (s)

0

20

40

60

80

100

U
sa

ge
(%

)

Instance 3

Ram Usage
CPU Usage

Threshold
Latency

Event

0

2

4

6

8

10

12

14

L
at

en
cy

(s
)

0

2

4

6

8

10

12

14

L
at

en
cy

(s
)

0

2

4

6

8

10

12

14

L
at

en
cy

(s
)

(b)

Figure 5: (a) Comparison for time taken to transfers
files over FTP/HTTP protocol with and without us-
ing Securebox. (b) SMS scales the number of instances
depending on incoming traffic analysis requests.

3.1.5 Using Bittorrent protocol
Bittorrent is an interesting use-case as it downloads

file contents from a number of peers who can not be fully
trusted. These peers are not static and a client may
need to switch between a number of peers depending
on the data availability and transfer rate of the peer.
Therefore, the number of requests made to SMS can
be much greater compared to that of FTP/HTTP file
transfer.

Our results show that Securebox increases the trans-
fer time for file1 (1280MB) and file2 (280MB) from 691
to 707 seconds, and 120 to 131 seconds, respectively.

3.2 Scalability
Section 2.2 suggests that one of the key advantages

of using remote analysis services (i.e., from the cloud)
is its ability to scale during heavy traffic such as flash
crowds. Figure 5b shows the capability of SMS to scale
with the load of incoming traffic requests. Initially all
requests are served by instance I. When the CPU usage
crosses a threshold at Event 1, SMS redirects some of
the requests to instance II. As the incoming request
volume keeps increasing, SMS can dynamically launch
instance III to share the request processing load.

3.3 Fault tolerance
Section 2.2 explains that Securebox is robust and

can maintain state aware replicas of middleboxes and
cloud manager to improve fault tolerance of the sys-
tem. Figure 6 depicts one scenario where an opera-
tional middlebox (OPM) breaks down during opera-
tions. When the OPM goes down, SMS elevates its
backup instances to become master and handle the traf-
fic analysis tasks. SMS either launches a new replica for
this master and the previous master (if recovered) starts
serving as backup replica node.

The number of backup instances to maintain depends
on the criticality of services. For example, when OPM is
processing normal traffic, one replica could be enough,
but if OPM is analyzing latency sensitive traffic then
more than one replicas should be maintained. If there
are more than one replica, any one of them can become a
master as SMS ensures that all of them are same replicas
of the master.

Time (s)
0

20

40

60

80

100

U
sa

ge
 (%

) Master running

Master down

Recovery

Backup

0 20 40 60 80 100 120
Time (s)

0

20

40

60

80

100

U
sa

ge
 (%

) Backup Acting master

Master operational

0

20

40

60

80

100

La
te
nc

y
(m

s)

0

20

40

60

80

100

La
te
nc

y
(m

s)

CPU Usage Latency Latency (User)

Figure 6: Fault tolerance in middlebox operations
using backup replicas.

Since the replicas can perform same traffic analysis
operations, if the result of these analysis is different be-
tween master and backup replicas, it alarms SMS for a
state inconsistency. SMS then takes relevant actions to
update middlebox configurations to ensure accuracy of
traffic analysis operations.

4. RELATED WORK
The idea of offloading home network management

tasks was first introduced by Nick Feamster [4]. Var-
ious systems have been proposed improve home net-
work management [2, 3]. Researchers have also pro-
posed the use of virtualized software middleboxes for
securing the networks to reduce cost and improve scal-
ability [6]. These systems suggest that user traffic can
be redirected through remotely deployed middleboxes
to provide better security [7]. However, these systems
requires users to define what traffic should be processed
through remotely deployed middleboxes [1].

Some commercial products e.g. Cujo7, Dojo8 have
also been designed for improving network gateways. These
products promise to secure the network by using re-
motely deployed services and machine learning tech-
niques. However, they do not provide any details (until
now) about performance, device functioning, user data
collected from network etc. They also do not provide
any control how the user traffic should be handled.

5. CONCLUSION & FUTURE WORK
While many other IoT projects concentrate on device

management and policy enforcement, Securebox is dif-
ferent: through the cloud-assisted platform and virtu-
alized modular design, it enables a “charge for network
service” model to augment IoT security and manage-
ment. The goal is to alleviate the impending risk caused
by the large installment of insecure IoT devices with po-
tentially unfixable flaws. It is our endeavor to realize the
vision of outsourcing network management and security
services to third parties [4, 7]. Instead of replacing ex-
isting solutions, Securebox exhibits a cost-effective al-
ternative that can be deployed incrementally in the ex-
isting infrastructure. We are currently enriching the
features of Securebox such as to support password-free
WiFi access and data cap per IoT device. Our next step
is to integrate Securebox with the commercial F-Secure
Sense product for real-network experimentation and de-
ployment. We plan to release the source code after the
integration process.

Acknowledgements
This is work is carried out in TAKE-5 and Cloud Se-
curity Services (CloSe) projects funded by Tekes and
Academy of Finland in collaboration with F-Secure and
Nokia. We thank Seppo Hätönen and Ashwin Rao for
their feedback and technical supports.

6. REFERENCES
[1] A. Alwabel, et al., “SENSS: Observe and Control Your

Own Traffic in the Internet”. In Proceedings of
SIGCOMM 2014.

[2] I. Bozkurt, T. Benson, “Contextual Router: Advancing
Experience Oriented Networking to the Home”. In
Proceedings of SOSR 2016.

[3] M. Chetty, et al., “uCap: An Internet Data
Management Tool For The Home”. In Proceedings of
CHI 2015.

[4] N. Feamster, “Outsourcing Home Network Security”. In
Proceedings of HomeNets 2010.

[5] M. Roesch, “Snort - Lightweight Intrusion Detection for
Networks”. In Proceedings of LISA 1999.

[6] J. Sherry, et al., “Making Middleboxes Someone else’s
Problem: Network Processing As a Cloud Service”. In
Proceedings of SIGCOMM 2012.

[7] T. Yu, et al., “Handling a Trillion (Unfixable) Flaws on
a Billion Devices: Rethinking Network Security for the
Internet-of-Things”. In Proceedings of HotNets 2015.

7www.getcujo.com
8https://www.dojo-labs.com/product/dojo/

	Introduction
	The Securebox Approach
	Securebox Frontend
	Security and Management Service
	Prototype
	Securebox Frontend
	Security and Management Service

	Evaluation
	Latency
	Internet browsing
	VoIP performance
	File transfer performance
	Using FTP/HTTP protocol
	Using Bittorrent protocol

	Scalability
	Fault tolerance

	Related Work
	Conclusion & Future Work
	References

