
IET SOFTWARE 1

Understanding Work Rhythms in Software
Development and Their Effects on

Technical Performance
Jiayun Zhang, Qingyuan Gong, Yang Chen, Senior Member, IEEE, Yu Xiao, Member, IEEE,

Xin Wang, Member, IEEE, and Aaron Yi Ding, Member, IEEE

Abstract—The temporal patterns of code submissions, denoted as work rhythms, provide valuable insight into the work habits and
productivity in software development. In this paper, we investigate the work rhythms in software development and their effects on
technical performance by analyzing the profiles of developers and projects from 110 international organizations and their commit
activities on GitHub. Using clustering, we identify four work rhythms among individual developers and three work rhythms among
software projects. Strong correlations are found between work rhythms and work regions, seniority, and collaboration roles. We then
define practical measures for technical performance and examine the effects of different work rhythms on them. Our findings suggest
that moderate overtime is related to good technical performance, whereas fixed office hours are associated with receiving less
attention. Furthermore, we survey 92 developers to understand their experience with working overtime and the reasons behind it. The
survey reveals that developers often work longer than required. A positive attitude towards extended working hours is associated with
situations that require addressing unexpected issues or when clear incentives are provided. Besides the insights from our quantitative
and qualitative studies, this work sheds light on tangible measures for both software companies and individual developers to improve
the recruitment process, project planning, and productivity assessment.

Index Terms—work rhythm, technical performance, GitHub.

F

1 INTRODUCTION

The time allocation for work activities is closely related to
a software developer’s daily routine and reflects her/his
work habits. We define the work rhythms in the process
of software development as the temporal patterns shown
in developers’ code submission activities. A typical work
rhythm of a developer could be described as follows. The
developer may start the work at 9 a.m. on working days and
concentrate on writing and submitting code during working
hours. She/he would take a short break at noon for lunch,
and the code submissions could stop for a while as well.
After finishing the tasks at 6 p.m., the codes will not be
updated until 9 a.m. on the next working day. Developers
working in companies with diverse cultures follow different
work rhythms. It was reported that one-third of software
developers do not adopt a typical working hour rhythm
(e.g., from 10 a.m. to 6 p.m.) [1]. The issues of developers’
work rhythms have been discussed extensively. A number
of Chinese tech companies have adopted an unofficial work
schedule known as the “996 working hour system”, which

• Jiayun Zhang, Yang Chen, Xin Wang are with the School of Computer
Science, Fudan University, China.

• Qingyuan Gong is with the Research Institute of Intelligent Complex
Systems, Fudan University, China.

• Yu Xiao is with the Department of Communications and Networking,
Aalto University, Finland.

• Aaron Yi Ding is with the Department of Engineering Systems and
Services, Delft University of Technology, Netherlands.

requires employees to work from 9 a.m. to 9 p.m., six days
a week. The public quickly took notice of these extreme
working hours as they were shared on social media1. The
abnormal work schedule has received criticism, arguing
that developers cannot keep focusing on programming
during such long working hours and their efficiency and
productivity decrease after working long hours2. However,
global leading news media, such as Cable News Network
(CNN)3 and British Broadcasting Corporation (BBC) News4,
reported another voice that many successful entrepreneurs
weighed on the advantages of long-hour work schedules to
the companies. These heated discussions with controversial
perspectives press an urge demand to understand develop-
ers’ work rhythms and their effects on practical technical
performance.

Studying work rhythms in software development yields
many important implications. For example, the profile and
activities in online developer communities are considered
reliable indicators of technical performance during the hir-
ing process [2]. However, having more commits during off-
hours does not necessarily equate to better code quality.
Instead of assessing based on the quantity of commits, it’s
crucial to acquire a deeper understanding of work rhythms
and their effects. Such insights can help employers gain
deeper knowledge about job applicants’ work habits before

1. https://github.com/996icu/996.ICU
2. https://www.scmp.com/tech/start-ups/article/3005947/

quantity-or-quality-chinas-996-work-culture-comes-under-scrutiny
3. https://edition.cnn.com/2019/04/15/business/

jack-ma-996-china/index.html
4. https://www.bbc.com/news/business-47934513

IET SOFTWARE 2

hiring. In addition, software development teams can rely on
more rational assessments of technical performance rather
than judging merely by the time spent in the office. With an
understanding of the effects of work rhythms on technical
performance, both project teams and individual developers
can better allocate and schedule their time in development.

The existing studies on the work rhythms of people
in different occupations often cover their effects on work
performance. Alternative work schedules, such as flexible
and compressed work schedules, had positive effects on
work-related criteria including productivity and job sat-
isfaction [3], [4]. Conversely, sustained work during long
working hours was associated with an increased risk of
errors and decreased work performance [5]–[9]. In the field
of software engineering, multiple studies have examined the
relationship between code quality and the time when the
work is performed. It has been found that the bugginess
of commits is related to the time (i.e., the hour of the day)
when those commits have been made, but there are large
variations among individuals and projects [10]–[12].

Previous studies have primarily focused on the effects of
work hours on code quality, within the contexts of limited
organizations and primarily consider code bugginess as
a quality metric. Additionally, they have not sufficiently
addressed the circadian and weekly patterns that char-
acterize developers’ work habits. Our study leverages a
large-scale, real-world dataset from GitHub to explore how
work rhythms correlate with multiple dimensions of tech-
nical performance. Considering that project-level working
behaviors often involve collaborative efforts of multiple
contributors and do not necessarily reflect the work patterns
of individual developers, our study analyzes both project5

and individual-level metrics. We aim to provide a more
comprehensive understanding of work patterns from two
different yet interconnected perspectives. Specifically, we
apply spectral biclustering [13] to identify the work rhythms
from both the individual and project perspectives. The bi-
clustering algorithm simultaneously groups both rows and
columns of a data matrix, allowing us to understand the
groups of similar subjects (i.e., developers/repositories) and
their typical commit behaviors at the same time. We analyze
the relationship between the identified work rhythms and
demographics (such as region and account/repository age)
and collaboration roles (i.e., whether a developer is a struc-
tural hole spanner [14]). We use popularity metrics (such
as followers, stars, forks, and issues on GitHub) and code
productivity (measured by lines of code changed per week)
as indicators of technical performance. Then, we perform
a comprehensive analysis to investigate how these work
rhythms influence technical performance. Furthermore, we
conduct a survey study to complement the results of empir-
ical data analysis.

Our major contributions are summarized as follows:
• We design an approach with spectral biclustering al-

gorithm to identify the work rhythms of repositories
and individual developers. This method reveals four
distinct work rhythms among individuals and three
among repositories.

5. In our study, the term “project” is used synonymously with “repos-
itory”.

• We present an empirical analysis of the correlations
between work rhythms and demographics including re-
gions, age, and collaboration roles. We define multiple
practical measures for technical performance and study
the effects of work rhythms on them.

• We conduct a survey involving 92 respondents to gain
insights into developers’ experiences and the reasons,
and attitudes towards overtime work.

We introduce the background and related works in
Sec. 2 and research questions in Sec. 3, followed by our
research methods (Sec. 4) and results (Sec. 5). We discuss
the significance of our contributions in Sec. 6 and offer some
concluding remarks in Sec. 7.

2 BACKGROUND AND RELATED WORK

Developers are engaged in multiple work activities in a
given week and follow some rules in the time usage in
software development [15]–[17]. Sequential analysis of the
generated contents are crucial to understanding the be-
havior patterns of online users [18], [19]. The widely-used
development tools such as version control systems and
online developer communities ensure the transparency of
the workflows, which provide researchers with abundant
resources to investigate developers’ work practices [20]–
[23]. By exploring the data from these development tools,
multiple studies have examined developers’ work practices
and contributions.

Firstly, the work time in software development have
been studied. For example, [1] defined work rhythm as
the circadian and weekly patterns of commits. They ana-
lyzed the commit timestamps of 86 open source software
projects and reported that two-thirds of the developers
follow a standard work schedule and rarely work nights
and weekends. Besides, [24] investigated the evolution of
developers’ work rhythms. They observe a trend where
developers adopt more regular work patterns over time
and start working increasingly earlier. Furthermore, this
study is closely related to our previous work [25], which
examined the commit activities of tech companies in China
and the United States and compared the differences in
working hours between companies in the two countries.
Compared to our previous work, this study expands the
scope and introduces new research questions—the correla-
tions between work rhythm and technical performance. In
addition, we enlarge the dataset to include a wider range
of regions and approach the analysis of working behaviors
at more granular levels by examining both project-level and
individual-level behaviors.

Secondly, the relationships between work quality and
work time have been investigated. For example, [26] stud-
ied the impact of Firefox’s rapid release cycle on software
quality. They found that the fast release cycle did not lead
to more bugs but accelerated the process of fixing bugs.
Additionally, several studies focused on the relationships
between the bugginess of code and the hour of the day
when the code is submitted. For instance, [10], [11] studied
three well known open source projects and found that more
bugs are contained in commits made during midnight and
early morning, while commits made in the morning have
the best quality. [12] investigated a closed source industry

IET SOFTWARE 3

0 6 12 18 24

Hour of Day

0

0.0025

0.005

0.0075

0.01

0.0125

R
a

ti
o

 o
f

C
o

m
m

it
s

Mon. Tues. Wed. Thur. Fri. Sat. Sun.

Fig. 1. Time distribution of code submissions on GitHub. The x-axis
shows the hour of day, with both 0 and 24 represent 12 a.m.. The y-
axis shows the ratio of commits made within an hour to the total number
of commits.

project and proposed that 8 p.m. is the hour with the highest
error rate. It is observed that varying results are seen across
projects.

Previous research on the effects of work time often
investigates projects from limited organization and only
considered the bugginess of code as the metric of code
quality. Additionally, these studies typically focus on the
effects of specific hours of the day, rather than the circadian
and weekly patterns. There is no sufficient investigation
with solid evidence yet to show the relationship between
work rhythms and technical performance from multiple
aspects. In this paper, we perform data analysis on a real-
world code submission dataset collected from GitHub, a
prominent online developer platform with over 100 million
developers and hosting more than 420 million repositories6.

During software development, people often use Git, a
distributed version control system, to monitor the motifica-
tions to the code. To submit code changes to Git, people
make commits, which include details such as authorship,
timestamp, and the code changes made. The temporal
distribution of a developer’s commit logs reflects her/his
rhythm of submitting code changes. These commit logs can
be accessed if the projects are uploaded to GitHub and set
to publicly visible. Figure 1 shows the time distribution of
developers’ code submissions on GitHub. The statistics are
generated according to the GitHub User Dataset [27], [28].
The dataset consists of the information and activities about
over 10 million randomly selected GitHub users. We focus
on the users who have more than 100 commits and have
submitted codes on more than 100 different days. Among
these users, we select 13,201 of the developers with 5,406,933
commits. Generally, developers commit more frequently on
weekdays than at weekends. There are peak hours of code
submissions at 11 a.m., 4 p.m. and 10 p.m., and an off-
peak period during the early morning, which conform to
the common sense of people’s daily life. The aggregated
commit logs in Figure 1 show that developers exhibit tem-
poral regularities in code submissions. However, given the
differences in the adoption of work practices, such general
work rhythm could not represent effectively the work habit
of each developer.

3 RESEARCH QUESTIONS

We aim to study the work rhythms of developers and
software projects to have a comprehensive view of work

6. https://github.com/about, accessed on May 18, 2024.

rhythms in software development from both the individual
and group levels. Our study is guided by four research
questions.

RQ1. What are the work rhythms of individual devel-
opers and software projects?

RQ2. Are work rhythms related to demographics and
collaboration roles?
The first two RQs intend to reveal representative work
rhythms among individual developers and software
projects, and examine discrepancy in the demographics of
the developers with different work rhythms.

RQ3. What is the correlations between different work
rhythms and technical performance?
The third RQ is to seek a deeper understanding of the
relationships of different work rhythms with the outcome
of work by considering various metrics for technical perfor-
mance.

RQ4. What are developers’ attitudes towards work
rhythms and productivity?
The last RQ investigates developers’ actual work experience
and their views on productivity.

4 METHODS

In this section, we present the data collection and analysis
methods in our study. A summary of the research sub-
jects, variables and the methods of data analysis for each
research question is provided in Table 1. The overview of
the methodology is presented in Figure 2.

4.1 Data Collection
The commit logs of public projects on GitHub are publicly
visible and can be retrieved by using the GitHub API. Our
data collection adhered to “terms of service” of GitHub7.
The data collection took place from May 1 to May 27,
2019. The dataset covers the commit activities of the source
repositories of 110 organizations ever since the repositories
were created. The location of the companies spread a wide
range from the United States (such as Facebook, Amazon,
Google) to China (such as Baidu, Tencent, Alibaba) and
Europe (such as SAP, Nokia, Spotify). To accurately assess
work rhythms, we used the local time of each commit log
to avoid the potential influence of different time zones
in which the commits were made. Commit logs without
time zone information (9.03% of the total) were excluded.
Following the data cleaning, a total of 1,532,439 commits
remained. Then, we group these commits by repositories
and committers respectively and form the following two
datasets for our analysis.

Company Repositories. We scanned the repository lists
of the 110 organization account and crawled descriptive in-
formation about the repositories and commit logs submitted
into the repositories. We selected repositories with at least
300 commits and formed the repository dataset with a total of
1,131 repositories and 1,111,685 commits.

Individual Developers. To study the work rhythms of
individual developers, we first merged different identities
of the same developer, as a developer may have multiple
identities on GitHub and in the version control system. We

7. https://help.github.com/articles/github-terms-of-service/

IET SOFTWARE 4

① Data Collection

commit frequency

② Data Processing

profiles

w
ee

kd
ay

w
ee

ke
nd

s

spectral biclustering

su
bj

ec
t

(d
ev

el
op

er
/c

om
pa

ny
)

commit frequency

③ Identifying Work Rhythms ④ Empirical Analysis

work
rhythms

• demographic
• collaboration role
• technical performance

⑤ User Survey

commits

• experiences
• reasons
• perspectives

Fig. 2. The figure describes the workflow of our study. We collect profiles of developers and projects, along with their commit activities, from 110
organizations on GitHub. Data processing is performed on these commits, which are then used to identify work rhythms via spectral biclustering.
We conduct an empirical analysis of the demographics, collaboration roles, and technical performances across these identified work rhythms using
hypothesis testing. Furthermore, we administer a user survey to understand developers’ attitudes on work rhythms and productivity.

extracted the email from the version control system’s author
field and GitHub account id from the author field recorded
in GitHub commit activity. We created a mapping from
email addresses to GitHub accounts and grouped together
identities that shared the same account ID or email address.
Following this de-aliasing process, 47.1% of the committer
identities were merged. Then, we chose the core developers
by selecting those with at least 30 commits. These devel-
opers are the top 12.5% of the committers and has made
85% out of all commits in our dataset. We further crawl the
GitHub account information of the developers, including
number of followers and number of stars in each of their
own repositories. Finally, we formed our developer dataset
with 7,509 individual developers and 1,296,715 commits,
among which, 2,754 have detailed information about their
GitHub accounts.

4.2 Identifying Work Rhythms
To profile how commits are created by a developer or in
a project repository, we compute the frequencies of commit
activities across different time intervals and apply clustering
to identify patterns.

4.2.1 Data Processing
For each developer or repository, we calculate the average
percentage of commits for each hour of the day on both
weekdays and weekends. Formally, denote the commit logs
of a repository or a developer as L = {c1, c2, ..., cH}, where
ch is the h-th commit and H is the total number of commits.
We segment a week into 168 hours (24 hours per day)
and count the number of commits made in each hour as
N = {n1, n2, ..., n168}. To reduce noise in the empirical
data, we follow [29]’s method to take a three-hour average
and divide it by the total number of commits to obtain the
commit frequency for each hour:

ft =


nt−1+nt+nt+1

3×Σ168
i=1ni

, 2 ≤ t ≤ 167, t ∈ N
n168+n1+n2

3×Σ168
i=1ni

, t = 1
n167+n168+n1

3×Σ168
i=1ni

, t = 168

(1)

Then, for each hour of the day, we compute the average
commit frequency in that hour on a weekday and a weekend
as Equation 2 and Equation 3 respectively:

f̄
weekday
h =

1

5
(f1

h + f2
h + f3

h + f4
h + f5

h) (2)

f̄weekend
h =

1

2
(f6

h + f7
h) (3)

where h denotes the h-th hour of the day and fd
h denotes

the commit frequency of the h-th hour of the day on the
d-th day of the week. Finally, the profile of a developer’s
commit behavior is represented as a 48-dimensional vector
{f̄dtype

h |h ∈ {1, 2, ..., 24}, dtype ∈ {weekday,weekend}}.

4.2.2 Biclustering Model
Among various classical clustering methods, such as K-
Means [30], DBSCAN [31], and the state-of-the-art ones
designed for specific applications such as topic models
(LDA) [32], [33], we choose the spectral biclustering [13]
algorithm to discover the work rhythms in our dataset.
Spectral biclustering is a clustering technique which gen-
erates biclusters—a group of samples (in row) that show
similar behavior across a subset of features (in column),
or vice versa. In our scenario, we group both develop-
ers/repositories and the commit behavior at a time in
order to understand the groups of similar subjects and
their typical behaviors. Specifically, developers/repositories
grouped in different row clusters show different commit
behaviors. In addition, the column clusters outputted by the
algorithm enable us to infer how developers/repositories
in different row clusters behave in each subset of hours.
Developers/repositories with the same rhythm have similar
commit frequencies in each subset of hours.

The model takes the 48-dimensional vectors as input
and automatically discover the clusters of work rhythms
by measuring the similarities between them. To implement
the clustering model, we used Scikit-learn [34], a widely
used machine learning library. To determine the optimal
parameter setting, we perform an iterative search for the
number of work rhythms k from 2 to 8 with empirical exper-
iments. For each k, we visualize the rhythms and examine
the number of samples in clusters to ensure clusters have
sufficient individuals and exhibit distinct patterns beyond
mere time shifting. We choose k as the largest value among
those tested that yields stable and distinctive work rhythms.

4.3 Empirical Analysis on Identified Work Rhythms
4.3.1 Demographics of Developers and Repositories
We intend to explore whether developers or repositories
with specific demographic information tend to follow spe-
cific work rhythms.

IET SOFTWARE 5

TABLE 1
Summary of Research Subjects, Variables and Methods of Analysis Applied to Research Questions

Research Question Subject Variable Analysis Method

RQ1 developer/repository commit frequency during the week Spectral biclustering

RQ2

developer
account creation time Mann-Whitney U test
structral hole spanner APGreedy, Pearson’s chi-squared test

repository
regions Pearson’s chi-squared test

repository creation time Mann-Whitney U test

RQ3

developer
of followers

Mann-Whitney U testaverage # of stars
h-index of stars

repository

of stars

Mann-Whitney U test
of forks

of open issues
lines of code changed per week

RQ4 developer
required and actual working hours

User studytime allocation for work activities
attitude towards working overtime

First, local cultures may have an impact on work
rhythms. To investigate whether there is a difference among
developers who work on repositories from different regions
in terms of work rhythms, we examine the countries of the
repositories that the developers worked on. For each devel-
oper, we group the repositories that she/he has made con-
tributions to and check which countries the organizations of
the repositories belongs to. If a developer has contributions
to repositories from more than one country, we set the work
region of the developer as “multiple countries”. We target
four different regions as the United States, China, Europe
and multiple countries.

In addition, considering the fact that senior developers
may take charge of more projects than junior developers, we
assume that senior developers have different work rhythms
from young developers. For this purpose, we investigate
whether there is a correlation between the type of work
rhythms and the seniority of the developers. We use the
number of days after the creation time of GitHub account as
a proxy for one’s seniority in programming.

Furthermore, according to [35]’s study, there are differ-
ences in terms of productivity between younger repositories
and older ones. As a result, repositories with longer histories
may have different work rhythms from newly-created ones.
We count the number of days since a project was created on
GitHub as the measure of repository age.

4.3.2 Collaboration Role

Collaboration is an important feature of software engineer-
ing. The developer’s participation in project collaboration is
a testament to her/his technical ability.

The structural hole theory [14], [36]–[38] in social net-
work analytics suggests that people who positioned in struc-
tural holes, known as structural hole spanners (SHS), play
a critical role in the collaboration and management of the
teams. A structural hole is perceived as a gap between two
closely connected groups. Structural hole spanners fill in the
gaps among different groups. They control the diffusion of
valuable information across groups and come up with new
ideas by combining ideas from multiple sources [14]. [39]

studied the role of structural holes in requirements identifi-
cation of open-source software development and found that
structural holes are positively related to the contribution of
a larger amount of new requirements and play an important
role in new requirement identification.

We intend to see whether there is a difference in terms of
work rhythms between SHS developers and ordinary devel-
opers. We build a collaboration graph using our dataset, in
which the node represents a developer and an edge between
two nodes represents the two developers have committed
to the same repository. We apply an advanced SHS iden-
tification algorithm called APGreedy [40]8 to find the SHS
in the collaboration graph and choose the top 500 devel-
opers as the SHS developers. After filtering out developers
with less than 30 commits, we get 246 SHS developers in
total. Accordingly, we select 246 non-SHS developers from
the rest using random sampling to represent the ordinary
developers.

4.3.3 Developer-level Measures on Technical Performance
We define the following measures for evaluating the techni-
cal performance of a developer.

Average Number of Stars - GitHub provides starring
function for users to mark their interest in projects. We count
the average number of stars received by the repositories
owned by the developer. Receiving more stars indicates a
higher popularity of a project [43].

Number of Followers - We use the number of followers
a GitHub user has at time of data collection as a signal
of standing [44] within the community. Users with lots of
followers are influential in the developer community as
many people are paying attention to their activities.

H-index of Stars - The h-index [45] was originally
introduced as a metric to evaluate both the productivity
and citation impact of a scholar’s research publications. It
has been used to measure the influence of users’ generated
contents in social networks [46]. We define h-index of a
developer as the maximum value of c such that the given

8. There are several SHS identification algorithms [37], [41], [42], and
APGreedy is a representative one.

IET SOFTWARE 6

developer has published c repositories that have each been
starred at least c times. We use this metric to measure both
the productivity and influence of a developer on GitHub.

4.3.4 Repository-level Measures of Technical Performance

In order to examine the technical performance of reposito-
ries, we define the following measures.

Number of Stars - We use the number of stars a reposi-
tory has received to evaluate the popularity of a repository.
A repository with many stars implies that many people
show their interests in it [35], [47].

Number of Forks - The “forking” function on GitHub
enables developers to create a copy of a repository as their
personal repository and then they can make changes to the
code freely. Similar with number of stars discussed above,
the number of forks a repository has received is another
important indicator that a repository is popular [35], [44],
[48].

Number of Open Issues - Issues can be used to track
bugs, enhancements, or other requests. In cases where the
project’s problem was suspect, submitters and core mem-
bers often engaged in extended discussions about the ap-
propriateness of the code [49], [50]. Repositories with more
open issues receive more attentions than those with less.

Lines of Code Changed per Week (LOCchanged) - This
measure is defined as the average number of lines of code
changed (the sum of additions and deletions) in all commits
in a repository per week. It is a measure of outputs produced
per unit time which serves as a proxy for productivity [35],
[51]–[53].

4.3.5 Hypothesis Testing

To accurately identify behavioural differences among differ-
ent populations, we conduct statistical hypothesis testing on
different groups.

First, we conduct Pearson’s chi-squared test [54] to
examine if there are significant differences in the work
rhythms among different groups (i.e., regions, collaboration
roles) of projects or developers. The Pearson’s chi-squared
test is commonly used for evaluating the significance of
the association between two categories in sets of categorical
data.

Second, we statistically validate if there are significant
differences in the demographics and technical performance
among different groups of software projects and developers.
We compute the measures of each subject within the group
and the measures of the population outside the group. Then,
we apply the Mann-Whitney U test [55], which is commonly
used to determine whether two independent samples are
from populations with the same distribution.

The results of Pearson’s chi-squared test and Mann-
Whitney U test are measured by p-value, where the smaller
p-value indicates higher significance level in rejecting the
null hypothesis H0. A p-value below 0.05 indicates a signif-
icant difference among the two populations in terms of the
selected measure. Cramer’s V and Cliff’s delta effect size are
used to supplement the results of Pearson’s chi-squared test
and Mann-Whitney U test respectively.

4.4 User Survey

In order to investigate how developers experience and think
of their work rhythms and productivity, we designed an
online survey and sent it to developers in selected tech
companies. The selected companies included a mix of large
corporations and start-ups.

Our survey was approved from the Research Depart-
ment of Fudan University for the ethical review. Prior to
the launch of the survey, we invited seven developers from
different tech companies and did a pilot test. These partic-
ipants completed the questionnaire and provide feedback,
which we used to refine the survey. Next, we performed
an undeclared pilot test involving ten participants from se-
lected companies in our dataset. We reviewed and discussed
their responses to ensure the questionnaire was free of major
issues. After finalizing the survey, we distributed it online
and asked the pilot participants to share the link to the
survey with others. The survey had 1516 views and received
92 responses from eligible respondents who identified their
current job as software development. The survey questions
are given in the Appendix.

First, to validate our result on work rhythms, we asked
survey participants about their required working hours and
actual working hours on a typical work day. The partici-
pants are required to provide both their required and actual
start time and end time of work, or to implicate there is no
required working hours.

Next, we asked participants about the time they spent on
different work activities and programming themes. Accord-
ing to [56], developers primarily identified coding-related
tasks as productive, whereas activities such as attending
meetings, reading, and writing emails were often consid-
ered unproductive. To gain insight into productivity both
during and outside office hours, we asked participants to
indicate the percentage of time they spent on various work
activities during these periods, including coding, studying,
project planning, writing documents, contacting colleagues,
meeting, social activities and others. Participants could
choose one among the following five options to indicate
the percentage of time they spent on each work activity or
programming theme: “less than 5%”, “between 5% to 20%”,
“between 20% to 35%”, “between 35% to 50%”, “more than
50%”. In addition, according to [56]’s work, different types
of programming tasks impact productivity differently. For
instance, activities such as development and bug fixing were
perceived as productive, while testing was considered un-
productive. We also asked participants about the percentage
of time they spent on different programming themes in off-
hours, using the same options as in the previous question.
We asked participants to specify the detailed information
if they had been involved activities or programming theme
other than those we listed.

Moreover, to understand whether developers believe
extra working hours can contribute to productivity, we
included a question asking whether extra working hours
increase productivity. Participants were given the option
to select either “agree”, “neutral”, or “disagree”. Then we
cross checked their ideas with their motivations for working
overtime. [57] proposed that the outcome of extra working
hours was affected by motivation. Highly motivated work-

IET SOFTWARE 7

0 3 6 9 12 15 18 21
Hour of Day

Mon.

Wed.

Fri.

Sun.Da
y
of
 W

ee
k

0.000

0.004

0.008

0.012

0.016

0.020

(a) Rhythm #1

0 3 6 9 12 15 18 21
Hour of Day

Mon.

Wed.

Fri.

Sun.Da
y
of
 W

ee
k

0.000

0.004

0.008

0.012

0.016

0.020

(b) Rhythm #2

0 3 6 9 12 15 18 21
Hour of Day

Mon.

Wed.

Fri.

Sun.Da
y
of
 W

ee
k

0.000

0.004

0.008

0.012

0.016

0.020

(c) Rhythm #3

0 3 6 9 12 15 18 21
Hour of Day

Mon.

Wed.

Fri.

Sun.Da
y
of
 W

ee
k

0.000

0.004

0.008

0.012

0.016

0.020

(d) Rhythm #4

Fig. 3. Identified work rhythms among developers in GitHub dataset. Deeper color indicates higher commit frequency during the time slot, with the
color bars on the right denoting the corresponding values of commit frequency.

ers might have more active attitude towards extra working
hours. In order to see how participants’ perspectives on
extra working hours differ with motivations, we included
a multiple-choice question, listing nine common reasons for
working overtime. These options were derived from initial
interviews with several developers, who explained why
they worked overtime. Their reasons were used as initial op-
tions in pilot tests. During the pilot tests, participants were
asked to provide additional reasons if theirs were not listed.
We then reviewed their answers and adjusted the options
to ensure that the given reasons covered all cases. Finally,
we concluded nine reasons from their responses, includ-
ing: 1) handling emergencies (such as application crashes),
2) meeting deadlines, 3) making up for the time wasted
on programming-independent work activities during office
hours, 4) taxi reimbursement (some companies covered the
taxi expenses within specific hours), 5) good environment of
company (such as free snacks and air conditioners), 6) peer
pressure (participants mentioned they stayed in the office
after work because most of their colleagues didn’t leave),
7) company requirements, 8) enjoying coding in spare time
and 9) working for bonus. One or more options could be
selected. Participants could also specify their reasons if they
are not given as options.

5 RESULTS

5.1 RQ1. What are the work rhythms of projects and
developers?

5.1.1 Work Rhythms of Developers
We apply clustering analysis on the commit behavior of
developers in our dataset. Four work rhythms are detected
among the developers in our dataset. We visualize the four
detected work rhythms in the form of heatmap as shown
in Figure 3(a)-3(d), with the x axis representing the hours
and the y axis representing the days in a week. The color
intensity of each time slot shows the aggregated commit
frequency among developers, where darker color indicates
higher commit frequencies. The detected work rhythms

TABLE 2
Column clusters outputed by biclustering on developers dataset. The

48 hours in weekdays and weekends are divided into four time subsets.
Developers with the same rhythm have the same degree of commit

frequency in each time subset. For example, as shown in Figure 3(a),
developers with rhythm #1 made commits at a high frequency during 9
a.m. to 5 p.m. on weekdays (i.e., time subset #1), while they have much

fewer commits during the other time subsets.

Subset Weekday Weekend

1 9 a.m. - 5 p.m. /
2 7 p.m. - 12 a.m. (mid night) 3 p.m. - 11 p.m.
3 / 9 a.m. - 2 p.m. & 12 a.m.
4 1 a.m. - 8 a.m. & 6 p.m. 1 a.m. - 8 a.m.

exhibit unique characteristics. The 48 hours in weekdays
and weekends are divided into four subsets as shown in
Table 2. We observe the commit behavior in the subsets of
hours and summarize the following characteristics:

#1: Nine-to-five Worker. As shown in Figure 3(a), devel-
opers with work rhythm #1 concentrate on programming
during regular office hours (9 a.m. to 5 p.m.) on weekdays.
They submit code changes less frequently after work hours
or on weekends.

#2: Flex-timers. As shown in Figure 3(b), the code
submissions of developers with rhythm #2 is uniformly
distributed on almost every hour on weekdays. Developers
with this rhythm are likely to submit code changes at any
time of the day and do not display fixed work and rest time.

#3: Overnight Developers. As shown in Figure 3(c),
developers with rhythm #3 submit their codes from 9 a.m.
to 12 a.m.. They also make code submissions on weekends
follow a similar daily working schedule as weekday while
the commit frequency on weekends is lower than that on
weekdays.

#4: Off-hour Developers. As shown in Figure 3(d), the
peak time of the code submissions of developers’ with
rhythm #4 is weekday nights and weekends, instead of
regular working hours on weekdays.

IET SOFTWARE 8

0 6 12 18 24

Hour of the Day

0

0.006

0.012

0.018

0.024

C
o

m
m

it
 F

re
q

u
e

n
c
y Pattern #1

Pattern #2

Pattern #3

(a) On Weekdays

0 6 12 18 24

Hour of the Day

0

0.006

0.012

0.018

0.024

C
o

m
m

it
 F

re
q

u
e

n
c
y Pattern #1

Pattern #2

Pattern #3

(b) On Weekends

Fig. 4. Identified Work Rhythms Among Company Repositories in GitHub Dataset

TABLE 3
Column Clusters Outputted by Biclustering on Repository Dataset. The

48 hours in weekdays and weekends are divided into three subsets.

Subset Weekday Weekend

1 9 a.m. - 5 p.m. /
2 7 p.m. - 12 a.m. (mid night) 9 a.m. - 12 a.m. (mid night)
3 1 a.m. - 8 a.m. & 6 p.m. 1 a.m. - 8 a.m.

5.1.2 Work Rhythms of Projects
We also apply clustering analysis on the commit behavior
of repositories. Three work rhythms are detected among
the repositories in our dataset. Figure 4(a) and Figure 4(b)
present the temporal distributions of commit frequency for
identified rhythms. The 48 hours in weekdays and week-
ends are divided into three subsets as shown in Table 3. We
summarize the features of the three identified rhythms as
follows:

#1: Typical Office Hours. Repositories with work
rhythm #1 adopt typical work time, usually from 9 a.m. to
5 p.m on weekdays. Code changes are rarely submitted into
those repositories on weekends.

#2: Slightly Extended Working Hours. Repositories with
rhythm #2 extend the typical work time to 6 p.m. on week-
days. Compared to developers in rhythm #1, repositories
with rhythm #2 usually have more code submissions on
weekends.

#3: Working Over Night and Weekend. Repositories
with rhythm #3 endure longer working hours than the
other two rhythms. Developers of these repositories work
equally on weekdays and weekends, starting from nine in
the morning to the midnight.

The percentage of developers and repositories in each
detected work rhythm is shown in Figure 5(a) and 5(b).
Among the four work rhythms detected in the developer
dataset, we observe that about two thirds of the developers
follow rhythm #1 (typical working hours), which conforms
to [1]’s finding. Among the three work rhythms detected
in the repository dataset, rhythm #1 covers half of the
repositories and rhythm #2 takes up 40% repositories, and
the rest 10% repositories follow rhythm #3.

5.2 RQ2. Are work rhythms related to demographics
and collaboration role?
Do work rhythms vary across different regions? We ex-
amine the work regions of the developers. The percent-
age of developers per rhythm in each regions are shown

Developer

64% 3%

25%

7%

Pattern #1

Pattern #2

Pattern #3

Pattern #4

(a) Developers

Repository

50% 40%

10%

Pattern #1

Pattern #2

Pattern #3

(b) Repositories

Fig. 5. Percentage of Developers and Repositories in Each Work
Rhythm

The United States

65% 4%

24%

7%

China

57%

1%

32%

10%

Europe

73%

2%

19%

7%

Multiple Countries

52%

3%

33%

11%

Pattern #1 Pattern #2 Pattern #3 Pattern #4

Fig. 6. Percentage of Developers with Each Type of Work Rhythm in
Different Regions

in Figure 6. Developers working for organizations in the
United States and Europe mainly follow rhythm #1, while
rhythms #3 and #4 are more prevalent among developers
working for organizations in China or multiple countries.
We divide developers into two groups according to their
work regions: the United States and Europe as a group,
China and “multiple countries” as another group. We apply
chi-square test to check the frequency of the two groups in
each of the four rhythms. We find a significant difference
between the two groups of developers in terms of the four

IET SOFTWARE 9

work rhythms (p-value < 0.001, Cramer’s V = 0.325).
Is there a correlation between work rhythm and de-

veloper seniority? We investigate the account age of devel-
opers in each rhythm and perform Mann-Whitney U test.
Figure 7(a) shows the account ages of the developers for
each work rhythms in box plots. Developers with rhythm
#3 (p-value < 0.001, Cliff’s delta d = 0.20) and #4 (p-
value = 0.004, d = 0.13) tend to create their GitHub account
earlier than those with other rhythms, which indicates that
developers with rhythm #3 and #4 start to be engaged in
software development earlier than those with the other two
rhythms. Developers with rhythm #1 created their GitHub
accounts later than others (p-value < 0.001, d = -0.20).

#1 #2 #3 #4

Pattern

900

1800

2700

3600

4500

D
a

y
s
 A

ft
e

r
J
o

in
in

g
 G

it
H

u
b

(a) Account Age

#1 #2 #3

Pattern

0

700

1400

2100

2800

3500

D
a

y
s
 A

ft
e

r
C

re
a

ti
o

n

(b) Repository Age

Fig. 7. Seniority of individual developers and maturity of repositories.
The five horizontal lines of each box represent, from bottom to top, the
minimum, first quartile, median, third quartile and maximum values (the
minimum/maximum are the lowest/highest values excluding outliers).

Is there a correlation between work rhythm and project
maturity? We investigate the repository age in each rhythm
and perform Mann-Whitney U test. As shown in Figure 7(b),
repositories with the three rhythms do not show significant
difference in terms of repository ages (p-values > 0.05).

Do SHS developers have specific work rhythms? The
percentage of developers in each rhythm among SHS devel-
opers and ordinary developers are shown in Figure 8. There
are more developers with rhythm #1 and less developers
with rhythm #3 among ordinary developers than among
SHS developers. We apply chi-square test and find a sig-
nificant difference between SHS and non-SHS developers in
terms of rhythm #1 and #3 (p-value = 0.006, Cramer’s V
= 0.128). Compared with ordinary developers, SHS devel-
opers tend to be overnight developers rather than work in
fixed office hours.

Non-SHS Developer

61%

1%

30%

7%

SHS Developer

49%

2%

41%

7%

Pattern #1 Pattern #2 Pattern #3 Pattern #4

Fig. 8. Percentage of Developers with Each Type of Work Rhythm Within
SHS Developers and Non-SHS Developers

TABLE 4
Correlation between developers’ work rhythms and technical

performance. ∗ marks the difference is significant with p-value ≤ 0.05,
∗∗ marks p-value ≤ 0.01 and ∗∗∗ marks p-value ≤ 0.001.

Rhythm Avg. # of Stars # of Followers h-index

#1 0.30∗∗∗ 0.34∗∗∗ 0.50∗∗∗
#2 1.25 0.63 1.00
#3 3.12∗∗∗ 2.95∗∗∗ 2.00∗∗∗
#4 2.17∗∗∗ 1.85∗∗∗ 2.00∗∗∗

5.3 RQ3. What is the correlations between different
work rhythms and technical performance?

Next we examine the effects of work rhythms on various
measures of technical performance. Figure 9(a)-9(c) present
the performance on the three measures for developers. We
perform Mann-Whitney U test and the results are shown
in Table 4. The value in each entry of the table is the ratio
between the median value of the measures within the group
and outside the group. A less than 1 value indicates the
developers with the selected rhythm have smaller value
in the chosen measure, and a higher than 1 value means
otherwise. In addition, ∗ marks the difference is significant
with p-value ≤ 0.05, ∗∗ marks p-value ≤ 0.01 and ∗∗∗

marks p-value ≤ 0.001. As shown in Table 4, developers
with rhythm #3 and #4 had more followers (Cliff’s delta
d = 0.30 and 0.16 respectively), received more stars from
their own repositories (d = 0.228 and 0.158 respectively) and
had higher h-indexes (d = 0.239 and 0.169 respectively). In
constrast, developers with rhythm #1 perform the worst in
all three measures: average number of stars (d = -0.235),
number of followers (d = -0.282) and h-index (d = -0.243).

We also examine the effect of repositories’ work rhythms
on technical performance and apply Mann-Whitney U test.
The results are shown in Figure 10(a)-10(d) and Table 5.
Repositories with rhythm #2 receive more stars (d = 0.085)
and have more forks (d = 0.090) than those with the other
two rhythms. Repositories with rhythm #3 receive more
stars than others (d = 0.151). As for the number of open
issues, there is no significant difference among the three
work rhythms.

It is interesting to find that although repositories with
rhythm #1 have larger LOCchanged than those with the other
two rhythms, their values of the other measures of technical
performance including stars (d = -0.133) and forks (d = -
0.10) turn out to be lower. In order to discover the reason
for this phenomenon, we further check the number of lines
of code added and deleted per commit in each hour of a day
respectively. As shown in Figure 11(a) and 11(b), during the
typical office hours, both the lines of code added and deleted
per commit submitted into repositories with rhythm #1 are
larger than those with the other two rhythms. During 4 p.m.
to 5 p.m. the sizes of the commits are the largest among
commits in all hours of the day. The commit sizes peak
between 4 p.m. and 5 p.m., suggesting a hypothesis that
developers working on repositories with rhythm #1 may
submit larger commits just before leaving the office to finish
their workday on time. However, this practice might lead to
lower code quality, necessitating deletions and rewrites the
next day. As a result, these repositories have more frequent

IET SOFTWARE 10

0 250 500 750 1000
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Pattern #1

Pattern #2

Pattern #3

Pattern #4

(a) Number of Followers

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Pattern #1

Pattern #2

Pattern #3

Pattern #4

(b) Average Number of Stars

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Pattern #1

Pattern #2

Pattern #3

Pattern #4

(c) H-index of Stars

Fig. 9. Technical performance of developers with four types of work rhythms. The figures show the cumulative distribution functions of three metrics:
number of followers, average number of stars, and h-index of the developers within each group.

TABLE 5
Repositories’ Work Rhythms and Performance

Rhythm # of Stars # of Forks # of Open Issues LOCchanged

#1 0.51∗∗∗ 0.71∗∗ 1.00 1.17∗
#2 1.66∗ 1.50∗ 1.03 0.91∗
#3 1.55∗∗ 0.99 0.93 0.78

code changes, but their stars and forks are fewer.

#1 #2 #3

Pattern

0

2000

4000

6000

N
u

m
b

e
r

o
f

S
ta

rs

(a) # of Stars

#1 #2 #3

Pattern

0

200

400

600

800

N
u

m
b

e
r

o
f

F
o

rk
s

(b) # of Forks

#1 #2 #3

Pattern

0

30

60

90

120

N
u

m
b

e
r

o
f

O
p

e
n

 I
s
s
u

e
s

(c) # of Open Issues

#1 #2 #3

Pattern

0

1000

2000

3000

M
e

d
ia

n
 L

in
e

s
 o

f
C

o
d

e

 C
h

a
n

g
e

d
 P

e
r

W
e

e
k

(d) Median # of LOCChanged Per Week

Fig. 10. Technical performance of repositories with three types of work
rhythms. The five horizontal lines of each box represent first quartile,
median, third quartile and maximum values from bottom to top, the min-
imum (the minimum/maximum are the lowest/highest values excluding
outliers).

5.4 RQ4. What are developers’ attitudes on work
rhythm and productivity?

5.4.1 Required Working Hour v.s. Actual Working Hour
We ask participants about their companies’ required work-
ing hour and their actual working hour on a typical work
day. As shown in Figure 12, most participants reply that

0 6 12 18 24

Hour of the Day

0

50

100

150

M
e

d
ia

n
 L

in
e

s
 o

f
C

o
d

e
s

 A
d

d
e

d
 P

e
r

C
o

m
m

it Pattern #1

Pattern #2

Pattern #3

(a) Line of Codes Added

0 6 12 18 24

Hour of the Day

0

20

40

60

M
e

d
ia

n
 L

in
e

s
 o

f
C

o
d

e
s

 d
e

le
te

d
 P

e
r

C
o

m
m

it Pattern #1

Pattern #2

Pattern #3

(b) Line of Codes Deleted

Fig. 11. Median Number of Lines of Codes Changed Per Commit

Fig. 12. Required Working Hours v.s. Actual Working Hours

their companies require an eight-hour work day schdule.
However, they usually work longer hours than required.

5.4.2 Content Switch between Office Hours and Off-Hours

Figure 13 presents the distribution of activities during office
hours and off-hours. Coding occupies the majority of time in
both periods. The rankings for time spent on different tasks
are mostly consistent, except for meetings and studying.
During office hours, meetings rank the 3rd and the 6th

respectively, whereas during off-hours, studying moves up
to 2nd and meetings drop to 6th. As shown in Figure 14,

IET SOFTWARE 11

the most common programming activity during off-hours
is developing, followed by testing, bug fixing, and creating
backups.

100 75 50 25 0 25 50 75 100

Percentage

Social Activities

Studying

Contacting Colleagues

Writing Documents

Meeting

Project Planning

Coding

< 5% 5% ~ 20% 20% ~ 35% 35% ~ 50% > 50%

34%

38%

29%

28%

19%

18%

2%

48%17%

37% 25%

62% 9%

65%

71% 10%

9%73%

8%

2%95%

(a) Office Hours

100 75 50 25 0 25 50 75 100

Percentage

Social Activities

Meeting

Contacting Colleagues

Writing Documents

Project Planning

Studying

Coding

< 5% 5% ~ 20% 20% ~ 35% 35% ~ 50% > 50%

13%

25%

18%

11%

11%

8%

5%

31%

16%

14%

10%

4%

5%

1%

56%

59%

69%

78%

85%

87%

94%

(b) Off-Hours

Fig. 13. Content switch between office hours and off-hours. The per-
centages on the right represent respondents who spend more than 35%
of their time on the activitie., while the percentages on the left indicate
those who report spending less than 20% of their time on the actiivities.
The percentage in the middle show respondents who select 20% to
35%.

100 75 50 25 0 25 50 75 100

Percentage

Others

Backup

Fixing Bugs

Testing

Developing

< 5% 5% ~ 20% 20% ~ 35% 35% ~ 50% > 50%

11%

19%

29%

20% 39%

15%

15%

5%

5%8%

41%

56%

66%

84%

87%

Fig. 14. Content of Coding in Extra Working Hours

5.4.3 Perspectives on Productivity in Extra Working Hours
Except for 25 participants (27.17%) who claim they do
not work extra hours, 38 participants (41.30%) believe that
additional working hours enhance productivity, 26 partici-
pants (28.26%) believe additional work time does not boost
productivity, and three participants (3.26%) are neutral.

We ask participants why they work overtime. Among
all the options, “deadline” receives the most votes (33.3%).
“Emergency” is the second most popular reason with 32.3%
responses. Besides, 24.7% mention they work overtime to
make up for the time wasted on programming-independent
work activities during office hours. 19.4% say that their
companies require extra working hours. 16.1% agree that

they work overtime because of peer pressure. 15.1% claim
that they work overtime because they enjoy coding in their
spare time. 7.5% say they stay in the office after work
because their companies provide good environment. 6.5%
mention that they work overtime because their companies
provide taxi reimbursement. Only 1.1% say that because of
the bonus that their companies offer for overtime work.12/10/23, 7:01 PM Echarts

file:///Users/jiayunz/Study/Fudan/Github/ICSE/render.html 1/1

Fig. 15. Relationship between motivation of working overtime and per-
spective on extra working hours. The height of a rectangle represents
the proportion of participants who agree on the option, and the flow
represents the proportion of participants who agree on both the two
options on each side.

We cross-check their motivations and their views on the
productivity of additional working hours. The results are
shown in Figure 15, where the height of a rectangle repre-
sents the proportion of participants who agree on the option,
and the flow represents the proportion of participants who
agree on both the two options on each side. According to
the results, more respondents agree extra workings hours
could increase productivity if they work overtime for emer-
gencies (19 agree and 8 disagree), deadlines (18 agree and 10
disagree), making up for the time wasted on programming-
independent work activities (13 agree and 10 disagree), taxi
reimbursement (4 agree and 2 disagree) or good environ-
ment of their companies (3 agree and 2 disagree). On the
contrary, less respondents agree with the idea if they work
overtime because of the company’s requirements (8 agree
and 9 disagree), peer pressures (7 agree and 8 disagree) or
bonus (0 agrees and 1 disagrees). Among the respondents
who work overtime because they enjoy coding in their spare
time, the numbers of participants who hold both views are
the same (4 agree and 4 disagree).

6 DISCUSSION

6.1 Implications for Software Practice

The purpose of this paper is to investigate the work rhythms
in software development and their effects on technical per-
formance. We identify four typical work rhythms in the
developer dataset. The typical working hours (from 9 a.m.
to 5 p.m. on weekdays) covers 64% of developers in the
dataset. The rest three rhythms represents an aperiodic
work rhythm, an overnight work rhythm and an off-hour

IET SOFTWARE 12

work rhythm respectively. Besides, three work rhythms are
detected among repositories in the dataset. There are one
typical work rhythm covering half of the repositories and
two different types of overtime work rhythm.

Work rhythms are correlated with demographics and
collaboration roles. Work rhythms with moderate extended
working hours are more popular among senior developers.
The maturity of a repository does not decrease the chance
of requiring its developers to work extra hours. Developers
who bridge collaboration groups consist of a higher propor-
tion of “overnight developers” than others.

Work rhythms with a moderate amount of extended
working hours appear to be associated with good technical
performance. According to our results, projects and devel-
opers following the work rhythms with moderate hours
of overtime work (rhythm #3, #4 in developers’ rhythms
and rhythm #2, #3 in repositories’ rhythms) turn out to
have better work performance than those following other
rhythms. Projects and developers following fixed-hour work
rhythms (rhythm #1 in developers’ rhythms and rhythm
#1 in repositories’ rhythms) show poorer technique per-
formance. Developers who follow aperiodic work rhythm
(rhythm #2 in developers’ rhythms) does not present better
performance than others.

Developers’ perspectives on productivity in extended
working hours are influenced by their motivations of work-
ing overtime. They would feel extended working hours
increase their productivity when the time for coding is
insufficient due to some unexpected arrangments (such as
approaching deadline) or the companies give clear incen-
tives (such as reimbursing taxi fares), while fewer believe
extended working hours could increase productivity if they
are under the requirement of companies, or work for bonus,
or just follow the other colleagues to work overtime. Tech
companies and teams could benefit from practices that not
forcing the members to work extra hours and providing em-
ployees with better work environment and clear incentives.

6.2 Limitations and Threats to Validity

Being a first study to reveal work rhythms in software
development and their effects on technical performance,
there are a few limitations in our work. First, the data an-
laysis in our study is limited to public open-source projects
hosted on GitHub. Therefore, our conclusions are specific
to the open-source projects and their contributors. While
our findings demonstrate notable distinctions between work
rhythms, we cannot guarantee their broader applicability
to the entire industry, as comprehensive data on a wider
range of companies and closed-source projects would be
necessary. We notice there are alternative platforms such
as GitLab where organizations release their work projects
in a timely way. Additionally, while we aim to capture
an authentic snapshot of developer activity in open-source
projects by forming an actual distribution of repositories in
the companies, the variation in the number of repositories
across these companies could potentially introduce bias into
the results. In future work, we plan to explore other data
sources to validate and expand our findings.

Second, our quantitative analysis on the work rhythms
primarily focuses on the commit activities. Analysis on more

comprehensive dataset could better reveal of rules of one
field of research [58]. Other activities, such as meetings and
document writing, also occupy developers’ working hours;
therefore, the time spent on programming might not fully
represent their work schedule. However, since program-
ming is a major task of developers’ work, the temporal pat-
tern of commits is a strong indicator of work time and our
findings could provide insights into developers’ working
status. We also acknowledge that there might be a delay
between the time of making commits and the actual time
of completing coding tasks. However, since our analysis is
based on aggregated commits rather than individual ones,
the impact of such delays should be negligible.

Third, the metrics we use to measure the technical
performance are indirect. For developers, we use average
number of stars, number of followers and h-index of stars as
indicators of their reputations. For repositories, we consider
number of stars, number of forks and number of issues
as proxies for user attention. More user attentions and
discussions mean that the repositories and developers are
recognized by more people, which indicates their good
technical performance. Besides, we use the lines of code
changed per week to measure code productivity. Although
these measures are intuitively reasonable, they could only
show technical performance in some way. More metrics such
as code quality should be addressed to get a comprehensive
understanding of the technical performance.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we aim to discover work rhythms in software
development and investigate their effects on technical per-
formance. We found four work rhythms among individuals
and three work rhythms among repositories in our dataset.
The findings indicate that developers working for organi-
zations in China or multiple countries tend to follow long-
hour work rhythms, while those working for organizations
in the United States and Europe tend to follow the typical
work rhythm. Regarding the effects of work rhythms on
technical performance, we found that a moderate amount
of overtime work is related to good technical performance,
while fixed office hours appear to be associated with projects
and developers that receive less attention. In addition, our
survey study indicates that developers usually tend to work
longer than their companies’ required working hours. A
positive attitude towards overtime work is often linked to
situations that require addressing unexpected issues, such
as approaching deadlines, or when clear incentives are
provided.

For future work, we aim to delve deeper into the un-
derlying mechanisms behind developers’ work. We wish
to understand the underlying causes for different work-
ing rhythms by considering the interplay between work
rhythms and other factors, such as technical roles and
collaboration patterns. Furthermore, we plan to investigate
the causal relationship between work rhythms and technical
performance by conducting experimentation and incremen-
tal studies.

IET SOFTWARE 13

8 DATA AVAILABILITY

As the data used in this work are publicly visi-
ble and accessible on GitHub, researchers interested in
accessing the data can retrieve it directly from the
GitHub platform with its official API. To ensure trans-
parency and facilitate further research, the list of or-
ganizations and repositories in our dataset is pub-
licly available on GitHub: https://github.com/jiayunz/
Work-Rhythms-in-Software-Development. Researchers can
refer to this repository to gain access to the specific projects
and repositories included in the dataset. For any inquiries
or requests related to the dataset, researchers can contact
the corresponding author through email.

ACKNOWLEDGMENTS

This work has been sponsored by National Natural Science
Foundation of China (No. 62072115, No. 62102094, No.
61602122), Shanghai Science and Technology Innovation
Action Plan Project (No. 22510713600). Yang Chen is the
corresponding author.

REFERENCES

[1] M. Claes, M. Mäntylä, M. Kuutila, and B. Adams, “Do Program-
mers Work at Night or During the Weekend?” in Proceedings of the
40th International Conference on Software Engineering. IEEE, 2018,
pp. 705–715.

[2] J. Marlow and L. Dabbish, “Activity Traces and Signals in Software
Developer Recruitment and Hiring,” in Proceedings of the 2013
conference on Computer Supported Cooperative Work. ACM, 2013,
pp. 145–156.

[3] B. B. Baltes, T. E. Briggs, J. W. Huff, J. A. Wright, and G. A. Neu-
man, “Flexible and Compressed Workweek Schedules: A Meta-
Analysis of Their Effects on Work-Related Criteria,” Journal of
Applied Psychology, vol. 84, no. 4, p. 496, 1999.

[4] L. Smith, S. Folkard, P. Tucker, and I. Macdonald, “Work shift du-
ration: a review comparing eight hour and 12 hour shift systems,”
Occupational and Environmental Medicine, vol. 55, no. 4, pp. 217–229,
1998.

[5] G. P. Krueger, “Sustained Work, Fatigue, Sleep Loss and Perfor-
mance: A Review of the Issues,” Work & Stress, vol. 3, no. 2, pp.
129–141, 1989.

[6] E. J. Josten, J. E. Ng-A-Tham, and H. Thierry, “The Effects of
Extended Workdays on Fatigue, Health, Performance and Satis-
faction in Nursing,” Journal of Advanced Nursing, vol. 44, no. 6, pp.
643–652, 2003.

[7] S. W. Lockley, L. K. Barger, N. T. Ayas, J. M. Rothschild, C. A.
Czeisler, C. P. Landrigan et al., “Effects of Health Care Provider
Work Hours and Sleep Deprivation on Safety and Performance,”
The Joint Commission Journal on Quality and Patient Safety, vol. 33,
no. 11, pp. 7–18, 2007.

[8] A. Richardson, C. Turnock, L. Harris, A. Finley, and S. Carson, “A
study examining the impact of 12-hour shifts on critical care staff,”
Journal of Nursing Management, vol. 15, no. 8, pp. 838–846, 2007.

[9] S. M. Keller, P. Berryman, and E. Lukes, “Effects of Extended
Work Shifts and Shift Work on Patient Safety, Productivity, and
Employee Health,” Aaohn Journal, vol. 57, no. 12, pp. 497–504, 2009.

[10] J. Eyolfson, L. Tan, and P. Lam, “Do Time of Day and Developer
Experience Affect Commit Bugginess?” in Proceedings of the 8th
Working Conference on Mining Software Repositories. ACM, 2011,
pp. 153–162.

[11] ——, “Correlations between Bugginess and Time-Based Commit
Characteristics,” Empirical Software Engineering, vol. 19, no. 4, pp.
1009–1039, 2014.

[12] L. Prechelt and A. Pepper, “Why Software Repositories Are Not
Used For Defect-Insertion Circumstance Analysis More Often: A
Case Study,” Information and Software Technology, vol. 56, no. 10,
pp. 1377–1389, 2014.

[13] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, “Spectral Biclus-
tering of Microarray Data: Coclustering Genes and Conditions,”
Genome Research, vol. 13, no. 4, p. 703, 2003.

[14] R. S. Burt, Structural Holes: The Social Structure of Competition.
Harvard university press, 2009.

[15] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “Understanding
and Improving Time Usage in Software Development,” Software
Process, vol. 5, pp. 111–135, 1995.

[16] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental
Models: A Study of Developer Work Habits,” in Proceedings of the
28th International Conference on Software Engineering. ACM, 2006,
pp. 492–501.

[17] E. Fu, Y. Zhuang, J. Zhang, J. Zhang, and Y. Chen, “Understanding
the User Interactions on GitHub: A Social Network Perspective,”
in Proceedings of CSCWD. IEEE, 2021, pp. 1148–1153.

[18] Q. Gong, Y. Chen, X. He, Z. Zhuang, T. Wang, H. Huang, X. Wang,
and X. Fu, “DeepScan: Exploiting Deep Learning for Malicious
Account Detection in Location-Based Social Networks,” IEEE
Communications Magazine, vol. 56, no. 11, pp. 21–27, 2018.

[19] X. He, Q. Gong, Y. Chen, Y. Zhang, X. Wang, and X. Fu, “Dat-
ingSec: Detecting Malicious Accounts in Dating Apps Using a
Content-Based Attention Network,” IEEE Transactions on Depend-
able and Secure Computing, vol. 18, no. 5, pp. 2193–2208, 2021.

[20] M. Saini and K. Kaur, “Fuzzy analysis and prediction of commit
activity in open source software projects,” IET Software, vol. 10,
no. 5, pp. 136–146, 2016.

[21] F. Javeed, A. Siddique, A. Munir, B. Shehzad, and M. I. Lali,
“Discovering software developer’s coding expertise through deep
learning,” IET Software, vol. 14, no. 3, pp. 213–220, 2020.

[22] M. A. Aljemabi, Z. Wang, and M. A. Saleh, “Mining social collabo-
ration patterns in developer social networks,” IET Software, vol. 14,
no. 7, pp. 839–849, 2021.

[23] A. Sajedi-Badashian and E. Stroulia, “Investigating the informa-
tion value of different sources of evidence of developers’ expertise
for bug assignment in open-source projects,” IET Software, vol. 14,
no. 7, pp. 748–758, 2020.

[24] B. Traullé and J.-M. Dalle, “The evolution of developer
work rhythms,” in International Conference on Social Informatics.
Springer, 2018, pp. 420–438.

[25] J. Zhang, Y. Chen, Q. Gong, X. Wang, A. Y. Ding, Y. Xiao, and
P. Hui, “Understanding the working time of developers in it
companies in china and the united states,” IEEE Software, vol. 38,
no. 2, pp. 96–106, 2020.

[26] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understanding the
Impact of Rapid Releases on Software Quality,” Empirical Software
Engineering, vol. 20, no. 2, pp. 336–373, 2015.

[27] Q. Gong, J. Zhang, Y. Chen, Q. Li, Y. Xiao, X. Wang, and P. Hui,
“Detecting malicious accounts in online developer communities
using deep learning,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019, pp.
1251–1260.

[28] Q. Gong, Y. Liu, J. Zhang, Y. Chen, Q. Li, Y. Xiao, X. Wang,
and P. Hui, “Detecting malicious accounts in online developer
communities using deep learning,” IEEE Transactions on Knowledge
and Data Engineering, 2023.

[29] R. Goyal, G. Ferreira, C. Kästner, and J. Herbsleb, “Identifying
unusual commits on GitHub,” Journal of Software: Evolution and
Process, vol. 30, no. 1, p. e1893, 2018.

[30] J. MacQueen, “Classification and analysis of multivariate observa-
tions,” in 5th Berkeley Symp. Math. Statist. Probability. University
of California Los Angeles LA USA, 1967, pp. 281–297.

[31] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in 2nd International Conference on Knowledge Discovery and
Data Mining, 1996, pp. 226–231.

[32] Z. Cheng, M. Trépanier, and L. Sun, “Probabilistic model for
destination inference and travel pattern mining from smart card
data,” Transportation, vol. 48, no. 4, pp. 2035–2053, 2021.

[33] Z. Li, H. Yan, C. Zhang, and F. Tsung, “Individualized passenger
travel pattern multi-clustering based on graph regularized tensor
latent dirichlet allocation,” Data Mining and Knowledge Discovery,
vol. 36, no. 4, pp. 1247–1278, 2022.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[35] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality
and Productivity Outcomes Relating to Continuous Integration in
GitHub,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, 2015, pp. 805–816.

IET SOFTWARE 14

[36] R. S. Burt, M. Kilduff, and S. Tasselli, “Social Network Analysis:
Foundations and Frontiers on Advantage,” Annual Review of Psy-
chology, vol. 64, pp. 527–547, 2013.

[37] Z. Lin, Y. Zhang, Q. Gong, Y. Chen, A. Oksanen, and A. Y. Ding,
“Structural hole theory in social network analysis: a review,” IEEE
Transactions on Computational Social Systems, vol. 9, no. 3, pp. 724–
739, 2022.

[38] W. Li, Z. Xu, Y. Sun, Q. Gong, Y. Chen, A. Y. Ding, X. Wang, and
P. Hui, “DeepPick: A Deep Learning Approach to Unveil Out-
standing Users With Public Attainable Features,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 1, pp. 291–306, 2023.

[39] T. Bhowmik, N. Niu, P. Singhania, and W. Wang, “On the Role of
Structural Holes in Requirements Identification: An Exploratory
Study on Open-Source Software Development,” ACM Transactions
on Management Information Systems, vol. 6, no. 3, p. 10, 2015.

[40] W. Xu, M. Rezvani, W. Liang, J. X. Yu, and C. Liu, “Efficient Algo-
rithms for the Identification of Top-k Structural Hole Spanners in
Large Social Networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 5, pp. 1017–1030, 2017.

[41] Q. Gong, J. Zhang, X. Wang, and Y. Chen, “Identifying structural
hole spanners in online social networks using machine learning,”
in Proceedings of the ACM SIGCOMM 2019 Conference Posters and
Demos, 2019, pp. 93–95.

[42] M. Gao, Z. Li, R. Li, C. Cui, X. Chen, B. Ye, Y. Li, W. Gu,
Q. Gong, X. Wang, and Y. Chen, “EasyGraph: A multifunctional,
cross-platform, and effective library for interdisciplinary network
analysis,” Patterns, vol. 4, no. 10, p. 100839, 2023.

[43] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of Social and
Technical Factors for Evaluating Contribution in GitHub,” in Pro-
ceedings of the 36th International Conference on Software Engineering,
2014, pp. 356–366.

[44] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social Coding
in GitHub: Transparency and Collaboration in an Open Software
Repository,” in Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work, 2012, pp. 1277–1286.

[45] J. E. Hirsch, “An index to quantify an individual’s scientific
research output,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 102, no. 46, pp. 16 569–16 572,
2005.

[46] Q. Gong, Y. Chen, X. He, Y. Xiao, P. Hui, X. Wang, and X. Fu,
“Cross-site prediction on social influence for cold-start users in
online social networks,” ACM Trans. Web, vol. 15, no. 2, pp. 6:1–
6:23, 2021.

[47] H. Borges, A. Hora, and M. T. Valente, “Understanding the Fac-
tors that Impact the Popularity of GitHub Repositories,” in 2016
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2016, pp. 334–344.

[48] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why
and how developers fork what from whom in GitHub,” Empirical
Software Engineering, vol. 22, no. 1, pp. 547–578, 2017.

[49] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s Talk About It: Evaluat-
ing Contributions through Discussion in GitHub,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2014.

[50] G. Vale, A. Schmid, A. R. Santos, E. S. De Almeida, and S. Apel,
“On the relation between Github communication activity and
merge conflicts,” Empirical Software Engineering, vol. 25, no. 1, pp.
402–433, 2020.

[51] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian,
P. Devanbu, and V. Filkov, “The Sky Is Not the Limit: Multitasking
Across GitHub Projects,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 994–1005.

[52] O. Dieste, A. M. Aranda, F. Uyaguari, B. Turhan, A. Tosun,
D. Fucci, M. Oivo, and N. Juristo, “Empirical evaluation of the
effects of experience on code quality and programmer productiv-
ity: an exploratory study,” Empirical Software Engineering, vol. 22,
no. 5, pp. 2457–2542, 2017.

[53] E. Oliveira, E. Fernandes, I. Steinmacher, M. Cristo, T. Conte, and
A. Garcia, “Code and commit metrics of developer productivity: a
study on team leaders perceptions,” Empirical Software Engineering,
vol. 25, no. 4, pp. 2519–2549, 2020.

[54] K. Pearson, “X. On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables
is such that it can be reasonably supposed to have arisen from
random sampling,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 50, no. 302, pp. 157–175, 1900.

[55] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other,” The
Annals of Mathematical Statistics, pp. 50–60, 1947.

[56] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Soft-
ware Developers’ Perceptions of Productivity,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 19–29.

[57] D. G. Beckers, D. van der Linden, P. G. Smulders, M. A. Kompier,
M. J. van Veldhoven, and N. W. van Yperen, “Working overtime
hours: Relations with fatigue, work motivation, and the quality of
work,” Journal of Occupational and Environmental Medicine, vol. 46,
no. 12, pp. 1282–1289, 2004.

[58] J. Wu, B. Ye, Q. Gong, A. Oksanen, C. Li, J. Qu, F. F. Tian, X. Li,
and Y. Chen, “Characterizing and Understanding Development
of Social Computing Through DBLP: A Data-Driven Analysis,”
Journal of Social Computing, vol. 3, no. 4, pp. 287–302, 2022.

IET SOFTWARE 15

APPENDIX: THE USER SURVEY

We conducted a user survey to gain deeper insights into
the working time of software developers. The survey was
comprised of 12 questions and took approximately 5-10
minutes to complete. All responses were kept confidential
and anonymous. The data collected from the survey was
used for research purposes only, and for overall analysis.
The survey questions are listed below.

1) What is the country of your company?
2) How long have you been employed at your current

company?
3) What is the type of your current job? (E.g. development,

testing, product management, etc.)
4) What is your company’s designated working hour for

workdays? (Please fill in the start and end time in 24-
hour format.)

5) What are your actual working hour for workdays?
(Please fill in the start and end time in 24-hour format.)

6) How often do you work overtime on weekends? (Please
choose one from the options.)
• I work on both Saturday and Sunday every weekend
• I work on either Saturday or Sunday every weekend
• I sometimes work on weekends (less than once a week,

please specify how many days per month on average)
• I never work on weekends
• Other (please specify)

7) Please rate the following statements according to how
well they match your actual situation. (1- Very inconsis-
tent, 2- Somewhat inconsistent, 3- Average, 4- Somewhat
consistent, 5- Very consistent.)
• Most of my colleagues work overtime.
• My company provides benefits for overtime worker.
• I enjoy working overtime.
• I work during holidays.
• I work more before/after holidays.

8) During your designated work hours, what percentage of
your time is spent on each of the following activities? (1:
Below 5%, 2: 5% - 20%, 3: 20% - 35%, 4: 35% - 50%, 5:
Above 50%.)
• Coding
• Project planning
• Meetings
• Reading/writing documents, preparing reports
• Handling other work tasks, e.g., reading/writing

emails, etc.
• Learning software, tools, skills, etc.
• Business entertainment, e.g. hosting colleagues, etc.
• Leisure activities
• Other

9) During your off-work hours, what percentage of your
time is spent on each of the following work-related
activities? (1: Below 5%, 2: 5% - 20%, 3: 20% - 35%, 4:
35% - 50%, 5: Above 50%. Skip this question if you do
not work overtime.)
• Coding
• Project planning
• Meetings
• Reading/writing documents, preparing reports

• Handling other work tasks, e.g., reading/writing
emails, etc.

• Learning software, tools, skills, etc.
• Business entertainment, e.g. hosting colleagues, etc.
• Leisure activities
• Other

10) During your off-work hours, what percentage of your
time is spent on each of the following programming
tasks? (1: Below 5%, 2: 5%–20%, 3: 20%–35%, 4: 35%–
50%, 5: Above 50%. Skip this question if you do not work
overtime.)
• Development
• Testing
• Backups
• Bug fixes
• Other

11) What is the main reason you engage in work-related pro-
gramming activities after work hours? (Multiple-choice
question.)
• I do not work overtime.
• Deadlines.
• Handling emergencies (such as application crashes).
• Making up for the time wasted on programming-

independent work activities during office hours.
• Company requirements.
• Peer pressure (most of my colleagues haven’t leave).
• Enjoying coding in spare time.
• The company provides good environment, e.g. free

smacks and air conditioners.
• The company provides taxi reimbursements within

specific hours.
• Working for bonus.
• Other. (Please specify the reason.)

12) Do you think extra working hours increase productivity?
• I do not work overtime.
• Agree - Overall, working overtime increases my work

output.
• Disagree - Overtime work does not compensate for my

extra working hours.
• Neutral.

