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Abstract—In an age of surveillance capitalism, anchoring the
design of emerging smart services in trustworthiness is urgent and
important. Edge Intelligence, which brings together the fields
of Al and Edge computing, is a key enabling technology for
smart services. Trustworthy Edge Intelligence should thus be a
priority research concern. However, determining what makes
Edge Intelligence trustworthy is not straight forward. This paper
examines requirements for trustworthy Edge Intelligence in a
concrete application scenario of voice-activated services. We
contribute to deepening the understanding of trustworthiness in
the emerging Edge Intelligence domain in three ways: firstly, we
propose a unified framing for trustworthy Edge Intelligence that
jointly considers trustworthiness attributes of AI and the IoT.
Secondly, we present research outputs of a tangible case study
in voice-activated services that demonstrates interdependencies
between three important trustworthiness attributes: privacy,
security and fairness. Thirdly, based on the empirical and
analytical findings, we highlight challenges and open questions
that present important future research areas for trustworthy
Edge Intelligence.

Index Terms—edge intelligence, voice activation, trustworthi-
ness, bias, fairness, security, privacy

I. INTRODUCTION

The modern vision of a smart world is one in which sensors
and devices connected in the Internet of Things (IoT) are aug-
mented with advanced data processing capabilities powered by
artificial intelligence (AI). Overlaying this vision with services
promises that its power can be harnessed, just as Web services
have harnessed the power of the Internet [1]. Ultimately,
proponents of this vision aspire to create technology that offers
fundamental positive change for humanity. However, there is a
catch. In a world in which monitoring and monetisation have
become the status quo of Web and cloud services, people
are increasingly rejecting a future in which their “private
human experience [is used] as free raw material for translation
into behavioral data” [2]. Zuboff’s exposition of surveillance
capitalism, the capture and commodification of personal data
for profit-making, is an urgent and compelling wake-up call
to reimagine the nature of the emerging smart world that we
are building as one anchored in trustworthiness.

Edge computing offers a building block for improving the
trustworthiness of the computing infrastructure in the IoT-
empowered smart world. The Edge enables data processing
closer to the source of data collection, which reduces or

Aaron Yi Ding
Engineering Systems & Services
Delft University of Technology
Delft, The Netherlands
0000-0003-4173-031X

even eliminates the need to send data to centralised cloud
servers [3]. When it comes to user privacy and the protection
of personal information, Edge computing can thus fill an
important gap. Edge Intelligence broadly encompasses the
distribution and execution of AI workloads on and for the
Edge [4]. Edge Intelligence consists of hardware, software,
networking and data processing components [5]. Individually
these components are already complex technologies. Joined
together, interactions between technology layers increase the
complexity. Paralleling the complexity of the technology, it is
not straight forward to determine what makes Edge Intelli-
gence trustworthy.

This paper scrutinises the requirements for trustworthy
Edge Intelligence through the lens of a concrete application
scenario of voice-activated services. We contribute to deep-
ening the understanding of trustworthiness in the emerging
Edge Intelligence domain in three ways: firstly, we offer a
unifying perspective on trustworthy Edge Intelligence that
jointly considers trustworthiness attributes of Al and the IoT.
Secondly, we present research outputs of a tangible case study
that demonstrate interdependencies between three important
trustworthiness attributes - privacy, security and fairness -
in voice-activated services. Thirdly, based on the findings
of our empirical and analytical studies, we highlight future
opportunities and challenges for developing trustworthy Edge
Intelligence.

We start with a background on trust and trustworthiness
in Section II. In Section III we build on the conceptual
foundation to align perspectives on trustworthy Al and IoT
towards a common vision of trustworthy Edge Intelligence.
Section IV introduces and contextualises voice activation (i.e.
technical components that are responsible for enabling and
securing access to voice-activated services) within the services
ecosystem. We then present insights on trade-offs and inter-
dependencies between privacy, security and fairness attributes
in voice-activated services in Section V. In Section VI we
take a step back and consider opportunities and challenges in
leveraging the insights gained to improve the trustworthiness
of voice-activated services in particular, and Edge Intelligence
more broadly. Finally, we summarise our work and conclude
in Section VIIL.



II. BACKGROUND

Given its constituent technologies, we position that trustwor-
thy Edge Intelligence should at least satisfy the requirements
of trustworthy IoT and trustworthy Al. However, trustworthi-
ness concepts in Al and the IoT do not readily align. It is
thus not immediately evident what makes Edge Intelligence
trustworthy. In this section we present definitions for trust and
trustworthiness, and illustrate how trustworthiness is concep-
tualised in the Al and IoT domains.

A. Trust and Trustworthiness

Trust and trustworthiness have been studied and formalised
in many domains, including Al [6], the Internet of Things [7],
Cyber Physical Systems [8], and e-services [9]. Drawing on
the work of Levi and Stoker [10], we briefly discuss how
we understand trust and trustworthiness in the context of our
research. Despite being a contested term, Levi and Stoker
position that there is broad consensus across disciplines that
trust is relational, seldom unconditional, and a judgement that
is expected to inspire a course of action. Trust judgments
reflect beliefs about the trustworthiness of the other party. This
perspective on trust and trustworthiness is implicitly reflected
in services computing, for example conceptualisations of trust
in crowd-sourced social IoT, where trust relationships between
IoT devices are conditioned on past device performance, which
is computed as a reputation score [11], [12].

Even if trust is not actually required, a trustee (i.e. the party
being trusted) can be trustworthy, meaning that they possess
the attributes that give a truster (i.e. the party that is trusting)
confidence that their trust will not be betrayed. Trustworthiness
attributes can be considered along two dimensions: intention
and competence. In the eloquent phrasing of Levi and Stoker
this means that “the trustworthy will not betray the trust
[bestowed upon them] as a consequence of either bad faith or
ineptitude.” In services computing we assume that services are
designed with good intentions and we investigate ill intentions,
or bad faith, under the umbrella of security breaches and
adversarial attacks (e.g. [13]). The aspects of trustworthiness
that relate to intentionality then consider a service’s ability to
withstand and recover from security breaches and attacks of
ill-intentioned actors, rather than the service’s own disposition.

The second dimension of trustworthiness, competence, re-
lates to service attributes that present evidence that the service
performs as expected, in alignment with specifications and
stakeholder values. In their adaptive trust management frame-
work [14], for example, Bahutair et al. consider two service
attributes, security and Internet speed, as trust indicators that
are necessary to ensure the free, safe, and secure exchange of
IoT services in the absence of a central authority. The trust
indicators determine the trustworthiness of the service in the
context of its intended usage and in relation to the desired end
goal (free, safe and secure exchange of IoT services).

Having laid a foundation for conceptualising trustworthi-
ness, we now discuss attributes of Al that are deemed neces-
sary to ensure its trustworthiness.

Al attributes

Descriptions

Human agency
& oversight

Technical
robustness &
safety

Supporting human autonomy and decision
making, and promoting a flourishing, demo-
cratic and equitable society

Ensuring physical and mental integrity of
humans, and reliable system behaviour that
minimises and prevents unintentional, unex-

pected and unacceptable harm, even under
uncertain or adversarial operating conditions

Privacy & data  Protecting the fundamental right to data pri-

governance vacy, including aspects of data quality, in-
tegrity, relevance, access and processing

Transparency Communicating system capabilities, pur-

poses and business models openly, making
data processing traceable, and decisions ex-
plainable so that they can be contested

Diversity, non-  Ensuring inclusion and diversity throughout

discrimination  the Al system life cycle, inviting stakeholder

& fairness participation, and designing for accessibility
to ensure equal access and avoid unfair bias

Societal & Promoting benefit for all human and sentient

environmental  beings, future generations, society at large,

well-being and the environment

Accountability  Subjected to scrutiny and redress through

auditing and reporting, and consideration of
trade-offs posed by trustworthiness concerns

TABLE I
ATTRIBUTES OF TRUSTWORTHY Al PROPOSED IN THE EU Al ETHICS
GUIDELINES [19]

B. Trustworthy Al

The rapid advancement of Al, accompanied by harmful
failures of the technology [15], has prompted the assembly of
trustworthy Al expert groups [16], special interest groups [17],
the development of public and private sector Al ethics guide-
lines [6], and large scale research collaborations to advance the
state of trustworthy Al [18]. While the understanding of trust-
worthy Al continues to evolve, key themes are emerging [6].
Trustworthy Al attributes that are considered important in the
European Union (EU) [19] are summarised in Table I. Even
though trustworthiness is linked to cultural values and varies
across geographic regions, many of the themes in the EU Al
Ethics Guidelines are echoed by other guidelines.

A central attribute of learning-based Al systems is that their
predictive and decision-making capabilities are contingent on
data from which the system can learn, and a data-processing
pipeline that specifies and performs the learning (typically
referred to as model training). This has implications for
trustworthy Al Building on the idea of continuous trust, which
states that trust levels can change over time, Toreini et al. [20]
introduce the notion of a Chain of Trust in machine learning
(ML). They argue that the trustworthiness of ML systems
should be considered throughout the product lifecycle, and
especially at each stage of the ML pipeline. This lifecycle
view of trustworthiness is echoed by Suresh and Guttag’s [21]
framework for identifying sources of harm (broadly referred
to as bias) in the ML lifecycle. They illustrate that bias
can arise at each stage of the ML lifecycle, and is not
only a problem of unrepresentative training data, as is often



IoT attributes  Descriptions

Privacy Preventing entities from gaining access to

data stored in, created by, or transiting the
IoT, in order to mitigate risks associated with

the processing of personal information
Reliability Delivering stable and predictable perfor-
mance in expected conditions

Resilience Withstanding instability, unexpected condi-

tions, and gracefully returning to predictable,
but possibly degraded, performance

Safety Ensuring the absence of catastrophic conse-

quences on the life, health, property, or data
of stakeholders and the physical environment

Security Ensuring that all processes, mechanisms and

services are internally or externally protected
from unintended and unauthorized access,
change, damage, destruction, or use. Consid-
ers confidentiality, integrity and availability.

TABLE 11
TIOT TRUSTWORTHINESS ATTRIBUTES AND THEIR DEFINITIONS FROM THE
NIST CPS FRAMEWORK [8]

believed. Bower et al. [22] motivate that the fairness attribute
of AI trustworthiness should be considered from a pipeline
perspective, as compound decisions in ML systems can lead
to unfair outcomes, even if individual decisions are fair. Next
we discuss how trustworthiness is considered in the IoT.

C. Trustworthy loT

Within the Edge Intelligence paradigm, we consider the IoT
and Cyber Physical Systems (CPS) from a unified perspective,
and jointly refer to them as IoT. This view is motivated by
the steady convergence of the two fields, and the benefits of
a common perspective which allows us to draw on research
progresses in both domains [23]. Trustworthiness is considered
similarly in both fields (see for example the US National Insti-
tute of Standards and Technology (NIST) CPS Framework [§]
and challenges and opportunities for trustworthy Al published
by the Industrial IoT Consortium [24]), and includes attributes
(NIST refers to them as concerns) of privacy, reliability,
resilience, safety and security as described in Table II. These
trustworthiness attributes serve to assure that systems behave
as expected under various operating conditions. The attributes,
while formalised, are viewed as interacting and interdependent,
affecting not only each other but also other IoT concerns.
Interdependencies between attributes raise challenges for trust-
worthiness, for example the interaction between software and
hardware can result in programming bugs that drain the
batteries of a critical component, or components developed by
different institutions need to be and remain compatible over
time [25].

ToT trustworthiness attributes have been studied extensively
in Edge Intelligence. For example, on the algorithmic side
advances have been made to combine federated learning with
local differential privacy to support model training on private,
distributed data sources [26]. On the application side, archi-
tectures and frameworks that use edge devices for privacy-
preserving data stream transformations have been explored for

surveillance applications [27], video analytics [28] and crowd-
monitoring [29]. Hybrid cloud-edge architectures have also
been explored for privacy-preserving intelligent personal assis-
tants [30]. Security attributes have been studied in works like
Edgedancer, which presents a platform for portable, provider-
independent and secure migration of edge services [31]. Hav-
ing discussed the attributes of trustworthy Al and IoT, we now
turn to attributes of trustworthy Edge Intelligence.

III. TOWARDS TRUSTWORTHY EDGE INTELLIGENCE

In this section we reconcile the Al and IoT perspectives on
trustworthiness to gain clarity on attributes that are necessary
to ensure trustworthy Edge Intelligence. We first motivate our
theoretical foundation for trustworthy Edge Intelligence, and
then align trustworthiness attributes between Al and the IoT.

A. Motivation of Theoretical Foundation

As pointed out by Ding et al. [32], the truster and trustee in
Edge Intelligence can be human, software or cyber-physical
objects, like edge hardware and Al models deployed on the
edge. In the service computing domain, it is also common
that computing tasks are outsourced to different parties, which
then become the trustee whose trustworthiness is required. We
have pointed out in previous work that neither trustworthy Al
attributes, nor trustworthiness concerns in the IoT address the
full spectrum of trustworthiness concerns that arise in Edge
Intelligence [5]. Using the NIST CPS Framework [8] and the
EU AI Ethics Guidelines [19] as a theoretical foundation, we
now investigate the alignment between conceptualisations of
trustworthy Al and IoT attributes.

A notable difference between the two frameworks is that the
CPS Framework aims to provide a unifying framework that
can serve as a reference for the development of CPS tools,
standards and documented applications. Concerns (attributes)
and descriptions have thus been formulated to support the
understanding and development of new and existing CPS, and
serve a design purpose within an analytic methodology. It
should be noted that trustworthiness is only one of several
aspects that is considered in the CPS Framework.

The EU AI Ethics Guidelines, on the other hand, are
driven by ethical and robustness requirements and offer general
guidance for building trustworthy AI. While the guidelines
aim to provide guidance for operationalising ethical principles
for trustworthy Al, they are aspirational in nature, and do
not readily convert to concrete design considerations and
specifications. Notwithstanding these differences in purpose,
we consider the two frameworks a valid starting point for
aligning trustworthiness concepts in Al and the IoT.

B. Aligning Trustworthiness Attributes

The differences between the frameworks are reflected in
their descriptions of trustworthiness concepts. In the matrix in
Table III we show which trustworthy AI and IoT attributes
align conceptually. Robustness and safety in trustworthy Al
spans across several trustworthy IoT attributes: the need for
reliable system behaviour speaks to reliability, performance



Trustworthy Trustworthy IoT Attributes

Al Attributes Privacy  Reliability = Resilience  Safety  Security  Alignment with Definitions of other IoT concerns

Agency & Oversight ‘ Manageability, Monitorability, Discoverability, Operability

Robustness & Safety | X X X X States, Uncertainty

Privacy | X X -

Transparency Communication, Monitorability, Enterprise, Quality, Utility, Op-
erations on data, Relationship between data, Responsibility, Com-
plexity, Discoverability

Diversity & Fairness ‘ Constructivity, Human factors, Usability

Well-being | Environment

Accountability Measurability, Monitorability, Regulatory, Responsibility, Discov-
erability

TABLE III

ALIGNMENT OF DEFINITIONS OF TRUSTWORTHY Al AND IOT ATTRIBUTES (X INDICATES ALIGNMENT).

under uncertain operating conditions relates to resilience, min-
imising and preventing harm translates to safety concerns and
adversarial operating conditions affect security. The privacy
attribute, on the other hand, is focused on protecting the right
to data privacy and the processing of personal information
in both domains. In addition, privacy in trustworthy Al also
includes data governance, and aspects of data quality, in-
tegrity, relevance and access. Privacy in trustworthy Al thus
also aligns with the security attribute in trustworthy IoT.
Apart from considering alignment between concepts, it is
also worth noting that the same concepts can mean different
things in the two domains. For example, the fairness-aware
framework for crowdsourcing IoT energy services in [33]
considers fairness as an optimisation problem, with the goal
of maximising the use of energy services across a time
period. This perspective diverges from fairness in Al, which
is concerned with inclusion, diversity, accessibility and bias.

C. Trustworthiness Interdependencies and Trade-offs

At first glance, trustworthy Al attributes other than ro-
bustness & safety and privacy do not overlap with those of
trustworthy IoT in Table III. However, on closer examination
the aspirations of trustworthy Al attributes can be mapped
to IoT concerns that relate to other (i.e. non-trustworthiness)
aspects. To illustrate, the diversity, non-discrimination & fair-
ness attribute of trustworthy Al will influence human factors
and usability, which are part of the human aspect in IoT.
They also relate to constructivity, which is concerned with
how the composition of modular components satisfies user
requirements. Similarly, a lack of transparency and account-
ability mechanisms on the side of Al systems will make it
difficult for authorised entities to gain and maintain awareness
of the state of Edge Intelligence services, thus reducing their
monitorability.

From Table III it is clear that to build trustworthy Edge
Intelligence, interactions between Al-driven components and
traditional IoT components must be considered. Moreover,
interdependencies and trade-offs between trustworthiness at-
tributes and other IoT concerns are important, as failures
of Al trustworthiness may affect a variety of IoT aspects
(e.g. functional, business, composition and human). While this
makes intuitive sense, many recent roadmaps and reviews of
Edge Intelligence focus only on trustworthy IoT attributes (e.g.

[4], [34], [35]). However, this does not mean that the Edge
Intelligence community is unaware of the challenges presented
by trustworthy Al Bouguettaya et al. point out that bias and
fairness in IoT data analytics are an open problem [1] and
Ding et al. position the necessity for trustworthy co-design in
their roadmap for Edge Al [36].

In the next sections we present a concrete case study
of voice-activated services to illustrate the interdependencies
and trade-offs encountered in developing trustworthy Edge
Intelligence.

IV. VOICE ACTIVATION IN SERVICE ECOSYSTEMS

From voice assistants and conversational agents, to social
robots and avatars, voice is an important interface for hu-
mans to communicate and interact with digital services [37].
Voice assistants such as Apple’s Siri, Amazon’s Alexa and
Microsoft’s Cortana have become particularly popular in smart
homes, as they enable verbal, hands-free and eye-free in-
teraction with web services (e.g. asking about the weather),
personal information (e.g. retrieving calendar information) and
smart home devices (e.g. turning on the light). Underlying the
seeming simplicity of voice-based interaction lies a complex
system of hardware, software, networked communications,
machine learning and voice assistant skills. Together with
their human and institutional stakeholders, these components
constitute the voice-based services ecosystem.

Figure 1 illustrates how technical components are composed
for service provision with voice assistants. Data storage and
processing tasks are distributed across three layers: at the
device level, voice assistants are activated with wake-word
detection or keyword spotting on a smart device. Once acti-
vated, the device transmits the recorded voice signal to a cloud
service provider. Here the voice signal undergoes advanced
processing to authenticate and distill the intent of the user. The
intent is used to formulate a query, which often invokes a third-
party service provider to retrieve the requested information.
The query response is sent back to the cloud service provider,
which synthesises a spoken response that is transmitted to the
device and returned to the user.

We define the voice activation system as the technical
components responsible for enabling and securing access to
voice-activated services. This includes activation components,



! Activation
! on-device
1 Processing

v
1
1
! wake-word keyword |
1 detection spotting :

'

Data Processing &
Authentication

Speaker Speaker
Diarisation Verification | —pm

Speech Processing &
Language Understanding

Natural
Language
Processing

Automated
speech
recognition

Cloud Service

Service Invocation

| Third Party
1 Service Provider
1

Query Information
. Processing Retrieval

Fig. 1. Voice activation and processing in voice assistants

namely wake-word detection and keyword spotting, and au-
thentication components, which include speaker diarisation,
speech enhancement, speaker verification and anti-spoofing.
Wake-word detection and keyword spotting are examples of
on-device machine learning, a type of edge intelligence in
which computations are shifted to devices to enhance privacy
and reduce latency. Speaker verification is a voice-based
biometric that serves an important security function in the
system. Anti-spoofing aims to prevent adversarial attacks on
speaker verification. Speaker diarisation and speech enhance-
ment are necessary for, but not exclusive to authentication.
Together, these components are important as they directly
impact whether a user has access to voice-activated services,
and if this access is secure and private.

Despite the large-scale adoption of voice-activated services,
the current voice-based ecosystem suffers from weak privacy
protection and security vulnerabilities [38]. We now exam-
ine interdependencies between privacy, security and fairness
attributes in voice-activated services to illustrate how trade-
offs and interactions between them challenge the trustworthy
design of Edge Intelligence.

V. INSIGHTS FROM VOICE-ACTIVATED SERVICES

Research into privacy challenges and security vulnerabilities
of personal assistant service on smart speakers has revealed
several attack surfaces. Edu et al. [38] categorise security
and privacy issues as weak authentication, weak authorisation,
profiling, adversarial Al and the complexity of underlying and
integrated technologies. While ongoing research efforts have
suggested some defenses and mechanisms for addressing the
challenges and vulnerabilities, research into this emerging and
fast evolving field is still in its early stage.

In our research we are particularly interested in privacy and
security attributes of voice-activated services within the greater
context of trustworthy Edge Intelligence. We thus investigated
interdependencies and trade-offs between trustworthiness at-
tributes and other system requirements. In this section we

on-device ML
+ bias

voice biometrics
+ bias

Fig. 2. Intersecting trustworthiness concerns in voice-activated services

highlight results of our recent studies, which provide the first
insights into interactions across privacy, security and fairness,
as illustrated in Figure 2). Specifically, we studied voice
biometrics as a defence mechanism for weak authentication,
and on-device ML as a solution for enhancing user privacy
during inference. We further investigated how bias, a source of
unfairness, manifests and propagates through the life cycles of
voice service technologies. Our results are clear: bias affects
the reliability of voice-activated components, and impacts
privacy and security attributes. It should thus be elevated
as a first-class trustworthiness consideration alongside security
and privacy, to ensure reliable service quality for all users.

A. Impact of Bias on Service Quality and User Experience

In the AI/ML fairness literature, bias is viewed as a source
of unfairness that can result in harm to individual users or
even some populations [39]. The notion of harm is application
dependent and can be considered in different ways [40]. For
example, allocative harms are caused when opportunities or
resources are withheld from a certain population. Represen-
tational harms reinforce stereotypes and subordinate some
groups of people along identity lines such as race, class,
gender, etc.. When voice activation is biased, this can degrade
service quality and user experience for individuals or some
groups of people in unpredictable ways. Depending on the
third party service that is invoked via voice activation, the
consequences may be slight or severe. In addition to degrading
service quality and user experience on a service level, bias may
also impact user safety.

One approach to evaluate the service quality of a voice
activation system is to consider the system’s error rates.
While voice activation is a multi-stage process that consists
of wake-word detection and speaker verification, the output
of the system, from a speaker’s point of view, is binary:
access is either granted, or denied. If an authorised speaker
is denied access, be this because a wake-word is missed or
because the speaker’s identity could not be validated, this is
considered a false negative (FN) error. On the contrary, if
an unauthorised speaker is granted access, or if the system
is activated erroneously, then this is a false positive (FP)
error. FP and FN errors affect different system properties
and carry different consequences depending on the third party
service that is invoked via voice activation. Table IV lists
system properties, the error type they are affected by, and the
consequences of errors.



System Affected by Consequences of Errors
property
FP FN

Usability X Frustration, feeling ignored, unvalued,
excluded

Safety X Injury, disabling injury, loss of life

Access X Denial of access to services

Security X Unauthorised access to personal data
and services

Privacy X Sensitive information revealed to third
parties

Compute X Longer response time, increased power
consumption, reduced battery life

Data transfer X Increased financial cost to consumer

TABLE IV
FALSE POSITIVE AND FALSE NEGATIVE ERRORS AFFECT DIFFERENT
SYSTEM PROPERTIES AND CARRY DIFFERENT CONSEQUENCES FOR USERS.

In biometric applications intrusion is a particular concern
and FP errors pose a security risk, as they grant an unautho-
rised person access to the system. In device-based applications
such as smart speakers and mobile phones, FP errors trigger
voice data to be transmitted for downstream processing and
thus also affect user privacy, compute and data transfer. Even
if no data is transferred, repeated FP errors can increase the
compute load on resource constrained devices. Consequences
of FP errors can then be that sensitive information is revealed
to third parties, that increased compute leads to longer re-
sponse times and increased power consumption, which again
results in reduced battery life, and that users incur increased
financial costs due to increased data transfer volumes.

FN errors, or misses, reduce the usability of a device or
of downstream voice-activated services. This can leave users
feeling frustrated, ignored and excluded. If the downstream
services are of critical nature, for example calling medical
emergency response, FN errors can also affect user safety
and lead to adverse, health-critical consequence. In some
applications, like personal identification for banking or social
services, FN errors affect access to important services. Being
denied access to services can impact users significantly, espe-
cially if alternative options to access the services are limited.
We now turn to bias in voice biometrics, show how it emerges,
and what approaches can be used to mitigate it.

B. Bias in Securing Voice-Authenticated Services

In Section IV we illustrated that speaker authentication is
necessary for securing voice-activated services from intrusion.
Speaker verification systems validate the identity of a person
from their voice [41], which makes them a popular biometric
authentication method for securing digital services with voice-
based access control. Over the past decade, speaker verification
evaluations have shown performance discrepancies between
female and male speakers [42]. Historically, these performance
differences went uninvestigated, and were attributed to imbal-
anced training data. While this contributes to bias, imbalanced
data offers only a part of the explanation. We conducted a
study on bias in automated speaker recognition [43], where
we gathered and analysed empirical and analytical evidence of
multiple sources of bias in the well-known VoxCeleb Speaker

Recognition Challenge (SRC). Our research shows that histori-
cal performance differences between male and female speakers
still exist in today’s deep neural networks, and that bias is
embedded in the development process of speaker verification.

1) Bias in Data Generation: Even though challenges such
as the VoxCeleb SRC serve research purposes and are not
necessarily used to evaluate real-life applications, they become
benchmarks and shape the research interests and directions of
the domain. This makes it a particular concern if they are
biased. As expected, we found that bias due to imbalanced
representation of speaker groups is one source of bias, with
training and evaluation datasets skewed towards males and
US nationals. Generated from celebrity speech, the VoxCeleb
datasets are also not representative of the broad public. The
process of generating the dataset presents additional reasons
to raise bias as a concern. Constructed with a fully automated
data processing pipeline from open-source audio-visual media,
the pipeline directly translated bias that has been exposed
in facial recognition verification technology into the speaker
verification domain.

2) Bias in Model Building and Implementation: Beyond
bias in the data, we found that modeling choices such as
the architecture and feature input can amplify performance
disparities. This tends to have a greater negative effect on
female speakers and nationalities with fewer speakers. Other
sources of bias involve evaluation and engineering practices.
Evaluations are based on and optimised for average perfor-
mance, which hides high error rates for some groups. For
example, we found that Indian female speakers have a FP
error rate that is 13 times greater than average, indicating that
this subgroup is much more exposed to security vulnerabilities
than other speakers. Evaluation metrics also introduce bias
through normative design decisions such as determining ap-
propriate weights for FP and FN errors. Traditionally, speaker
verification has been optimised to reduce security concerns by
minimising FP errors. In device-based applications, attributes
such as usability, which is influenced by FN errors, are also
important. Yet, benchmarks often do not adjust weights to
adapt evaluation practices and datasets to these emerging
contexts, leading to the oversimplification of common real-
life usage scenarios.

3) Mitigating Bias with Inclusive Evaluation Datasets:
High gain approaches to mitigate bias are not limited to
algorithmic interventions. We have observed that interdisci-
plinary approaches to tackle bias with software engineering
and design interventions present opportunity for progress
in voice-activated services. We have already motivated that
evaluation datasets that are representative of usage contexts are
particularly important for ensuring unbiased speaker verifica-
tion performance. To address bias due to unreliable evaluation
practices, we thus developed design guidelines for inclusive
evaluation datasets that enable robust speaker verification
evaluation [44]. We set up experiments to show that the
difficulty grading of data samples in the evaluation set, and



the distribution of difficult samples across speakers, have
a significant effect on evaluation outcomes. These technical
aspects of evaluation datasets were previously not considered
in the speaker verification domain. Our experimental results
enabled us to make evidence-based suggestions for generating
evaluation datasets that are inclusive and also more robust in
real-life usage scenarios.

We now move from security to privacy, discussing how the
shift from cloud processing to resource-constrained ML on the
Edge affects bias.

C. Bias in Private Voice Activation

Edge computing offers opportunities for improved user
privacy by processing data locally without transferring it to
the cloud. On-device ML inference uses Edge computing to
make predictions from sensor data directly on the device that
collected it, thus improving the privacy of applications that use
personal information. However, the benefit of privacy comes
at a cost. Memory, power and storage capacity of devices
are constrained, and ML models and computing operations
must be adapted to this low resource context. This can affect
predictive performance [45]. Moreover, we found that design
choices made to adapt models for on-device inference can also
impact bias [46]. In the following paragraphs we unpack the
impact that shifting ML inference tasks from the cloud to
devices has on bias in an audio keyword spotting task, and
highlight interventions for mitigating bias.

1) Reliability Bias in On-device ML: Our work is under-
pinned by the concept of reliability bias [46]. We define
reliability bias as disparate on-device ML performance due to
demographic attributes of users. In voice-activated services,
reliability bias can lead to systematic service failures and
consequently disparate service reliability across user groups.
Reliability bias can be quantified and evaluated during ML
development on an individual or a group level. To illustrate,
we consider a ML model as a reliable component for a user
group if the group’s predictive performance equals the model’s
overall performance across all groups. If a model performs
better or worse than average for a group, we consider it to
be biased, showing favour for or prejudice against that group.
Both favouritism and prejudice increase reliability bias, though
only prejudice reduces the quality of service. It is not possible
to favour all groups. If some groups are favoured, there will
be other groups that experience prejudice.

2) Application Heterogeneity Necessitates Fine-tuning:
Next, we characterised the role of pre-processing parameters in
audio-based embedded ML [47]. Our studies revealed that de-
cisions pertaining to data input and feature extraction present
trade-offs between predictive performance, system efficiency
(measured as inference latency) and bias. Moreover, we also
found that certain design choices are more robust in uncer-
tain deployment conditions than others. For example, models
trained at 16kHz show significant performance degradation
when data is sampled at 8kHz after deployment. However,
models trained with log Mel spectrogram features are less

affected by this change than models trained with MFCC
features. These results highlight that tuning pre-processing
parameters to meet application requirements, rather than using
default parameters for feature extraction, is necessary to ensure
that heterogeneous, on-device applications work as intended.

3) Bias due to Design Choices: We expanded this work
to investigate how design choices during ML development
impact reliability bias in the on-device setting [46]. We studied
the effects of varying default values of four common design
choices: the sensor sampling rate, the model architecture, input
features and model pruning, which is used for model compres-
sion. We found that models trained at higher sample rates have
higher predictive performance and are less biased than those
trained at lower sample rates, whereas models trained with
smaller architectures tend to be more biased. During post-
training optimisation, we found the pruning learning rate to
be the hyperparameter with the most significant impact on
predictive performance and reliability bias.

4) Mitigating Bias in the On-device ML Workflow: We
can use these insights to make actionable suggestions to
help developers navigate the complex on-device ML workflow
with fairness in mind: by measuring bias and considering
fairness during model selection, parameters can be chosen
to train less biased models with only a small cost to pre-
dictive performance. Once a set of models has been trained,
selecting several models for optimisation, testing a range of
optimisation parameters (e.g. pruning hyperparameters) and
using a satisficing metric such as reliability bias to consider
predictive performance and fairness during model selection,
help to balance trade-offs between accuracy and bias when
applying interventions for model optimisation. Ultimately,
careful design holds a lot of opportunities for mitigating bias
and deploying fairer models without sacrificing predictive
performance of voice-activated services.

VI. CHALLENGES AND OPEN QUESTIONS

In the previous section we looked backwards, highlighting
and reflecting on insights that we gained through our research
at the intersection of privacy, security and fairness attributes
in voice-activated services. In this section we look forward,
exploring challenges and open questions that lie ahead on the
path towards trustworthy Edge Intelligence. As a source of
inspiration we reimagine in Figure 3 how technology com-
ponents and layers could be reassembled in voice-activated
services to enforce privacy, improve reliability with personali-
sation, and encourage the participation of diverse stakeholders.

A. Migrating Inference tasks from Cloud to Edge to Devices

The current services ecosystem relies heavily on cloud
servers for meeting computational demands. While the cloud
remains an important computing resource, we need to shift
the balance between cloud, Edge and on-device computing
to realise our aspirations for trustworthy services. Training
large models is unlikely to migrate off the cloud in the short
term, but innovations in Edge processing and low resource
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Fig. 3. Rethinking technology layers in voice-activated services with trustworthiness in mind

machine learning make it possible to shift inference, fine-
tuning, model updates and management tasks downstream
onto Edge servers and devices. An immediate need in voice-
activated services is to develop approaches for deploying voice
biometrics in on-device low power, low compute settings, in
order to secure billions of devices and the services they invoke.
Being cognisant of the lessons we learned from on-device
keyword spotting, bias should be considered, so that privacy
and security do not come at the cost of fairness.

B. Bias Propagation in Voice-Activated Service Composition

We have discussed bias in two individual components of
voice-activated services: keyword spotting and speaker verifi-
cation. Even though we have investigated interdependencies of
trustworthiness attributes, we have not investigated interactions
between components. Typically, intelligent systems in smart
services are constructed from multiple Al-driven components,
as Figure 3 shows. Bias does not affect components in
isolation, but can propagate through the system, with a high
likelihood of touching many components in smart services. For
example, two-step cascade architectures are already used for
wake-word detection [48]. The first stage provides an always-
on service, and is optimised for extreme energy efficiency
and low FN errors. Even though this comes at the cost of
an increased FP error rate, the second stage, which runs on
a larger processor, can catch the errors downstream. This
can reduce performance related bias, but high FP error rates
increase the processing load on the second stage, which affects
power consumption and battery life. This can lead to different
forms of reliability bias pertaining to hardware performance
in the second stage of the wake-word spotter.

Having a more comprehensive understanding of how bias
propagates through the system and affects various attributes is
thus important for the future. Existing qualitative frameworks
can help with this (e.g. the framework proposed by Suresh

and Guttag [21]), but new quantitative tools that can be
integrated into the development and deployment process are
also necessary to facilitate better design.

C. Mitigating Bias with Personalisation and Tolerancing

Personalisation adapts technology to individual users. This
presents a promising avenue for mitigating bias. For example,
in speaker verification we found that tuning the classification
threshold for groups of same-gender-same-nationality speak-
ers, rather than for all speakers, improves the performance for
all groups [43]. A promising direction for future work is to
investigate if the same holds true when tuning thresholds for
individual users. Further developing algorithmic approaches,
like model fine-tuning, for Edge and on-device settings is also
promising.

Tolerancing presents an interesting alternative approach for
considering ML component performance. While ML is largely
concerned with optimising performance, many physical engi-
neering components are designed to a tolerance. Tolerancing
implies designing a component to a satisfiable range. Rather
than optimising metrics to the highest possible aggregate,
ML components that satisfice metrics can aim to meet users’
needs and a specified quality of service for all users. The
desired outcome are models that perform within an accept-
able performance range for all users, rather than particularly
well for some, and poorly for others. Tolerancing presents a
very different approach to addressing bias, as the end goal
is sufficiently good performance for all, rather than equal
performance for all.

Whether personalisation or tolerancing, doing these post-
processing operations without compromising user privacy will
be important, as parameters such a thresholds contain personal
information. Private personalisation may also open new oppor-
tunities for human-Al collaboration. An interesting question
for future research is whether humans are willing to provide



more useful data and feedback to improve system performance
if the service is private and they trust it.

D. Trustworthiness Beyond Fairness Beyond Debiasing

Bias is only one source of unfairness, and fairness only
one aspect of trustworthy Edge Intelligence. While developing
unbiased Edge Intelligence is a necessary research and design
objective, it is also important to study how business models
and deployment end goals support diversity and fairness objec-
tives throughout the Al life cycle. For example, if an unbiased
model is deployed to monitor and discriminate against a
minority group, the outcomes remain unfair [49]. Or if human
data labelling [50] and content moderation [S1] practices
rely on exploiting workers at best, and violating their human
rights at worst, then the models built with these data, even if
unbiased, cannot be described as fair.

Beyond fairness, research questions relating to transparency,
accountability and human agency and oversight are largely
unexplored in Edge Intelligence. In our pursuit of trustworthy
Edge Intelligence, reflecting on these questions can help us
gain insights: Can Edge Intelligence be designed to sup-
port consumer choice and control? Can systems be designed
for flexibility, making Al-driven components interchangeable?
What does it mean for the outputs of Al-driven components in
Edge Intelligence to be explainable? How is the performance
of dynamically evolving Edge Intelligence systems communi-
cated to users, in a way that they can understand and make
informed decisions? Who is accountable for the performance
of Edge Intelligence; and who is responsible for resolving
and repairing issues? As with bias and fairness, attributes like
agency and oversight, transparency and accountability interact
with each other and with other system components. Many open
questions remain, and future research is needed to reveal those
interactions, trade-offs and interdependencies of the various
trustworthy Al and IoT attributes that enable trustworthy Edge
Intelligence.

VII. CONCLUSION

Over the coming years smart services will continue to
penetrate our daily lives. As researchers and practitioners, we
carry the responsibility of fostering practical processes that
create the necessary preconditions to ensure that smart services
result in “fundamental positive change for humanity” [1].
This paper provides timely insights into the intricacies and
opportunities that lie ahead as we move forward on this
path towards trustworthy Edge Intelligence. We advocate that
trustworthiness is an indispensable requirement when embed-
ding Al on the Edge for advanced IoT services, and that a
holistic approach to trustworthiness should inform the growing
adoption of Edge Intelligence. By sharing our insights from
voice-activated services, we unify trustworthiness perspectives
from the AI and IoT domains. Our work highlights that
fairness cannot be treated as a retrospective design add-on,
but that it should be elevated as a first-class trustworthiness
consideration alongside security and privacy.
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