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Abstract—Social networks now connect billions of people
around the world, where individuals occupying different posi-
tions often represent different social roles and show different
characteristics in their behaviors. The structural hole theory
demonstrates that users occupying the bridging positions between
different communities have advantages, since they control the
key information diffusion paths. This type of users, known as
structural hole (SH) spanners, are important when it comes to
assimilating social network structures and user behaviors. In this
paper, we review the use of structural hole theory in social net-
work analysis, where structural hole spanners take advantage of
both information and control benefits. We investigate the existing
algorithms of structural hole spanner detection, and classify them
into information flow-based algorithms and network centrality-
based algorithms. For practitioners, we further illustrate the
applications of structural hole theory in various practical sce-
narios, including enterprise settings, information diffusion in
social networks, software development, mobile applications and
machine learning-based social prediction. Our review provides
a comprehensive discussion on the foundation, detection and
practical applications of structural hole theory. The insights can
facilitate researchers and service providers to better apply the
theory and derive value-added tools with advanced machine
learning techniques. To inspire follow-up research, we identify
potential research trends in this area, especially on the dynamics
of networks.

Index Terms—social networks, structural hole theory, applica-
tions, machine learning.

I. INTRODUCTION

Nowadays, it is much easier for people to connect with one
another and form complex social networks in diverse scenar-
ios. On one hand, the booming online social networks (OSNs)
such as Facebook, Twitter and WeChat emerge and build rela-
tionships between remote users. Media sharing networks like
YouTube, Snapchat and Instagram are gaining more and more
popularity. On the other hand, there are many kinds of real-
world offline social networks, such as friendship networks [1],
criminal networks [2]–[4] and collaborative innovation net-
works [5]. Studies about social network structures and user
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profiling have been prosperous these years, with the aim to
better understand various user groups, model information flows
and improve friends or news recommendations.

It is worth noting the advantages brought about by social
connections. As a leading sociologist, Burt [6] put forward the
point of view in the competitive fields that social structure is
a key factor in determining investment returns. Connections
to diverse communities of a social network increase the social
capital one player could use in the competitive fields, while the
closed networks with homogeneous and repetitive information
will not bring such advantages. This standpoint serves as the
core of the structural hole theory. According to this theory,
groups of people who are unconnected form holes in the social
structure. The lack of connection is referred to as a structural
hole. Individuals acting as bridges or intermediaries between
them fill the holes, called structural hole (SH) spanners [7],
as illustrated in Fig. 1. These individuals occupying the holes
benefit from getting access to more different kinds of opinions
and ideas, synthesizing more potentially feasible methods, and
better coordinating multiple tasks of diverse communities.

SH Spanner

Community 1 Community 2

Fig. 1: Structural Hole (SH) Spanners in Social Networks

The idea behind structural hole theory owes to the weak
tie theory developed by Granovetter [8]. In the weak tie
theory, the overlap of two contacts in their friendship network
increases if the strength of their tie is stronger. Weak ties act
as bridges to diffuse novel ideas between different groups.
While Granovetter argued that the strength of a tie determines
whether it plays the bridging role, Burt considered that the
cause lies in the structural hole it spans. According to the
structural hole theory proposed by Burt [6], the advantages
brought about by weak ties for SH spanners are information
benefits. The structural holes, which generate information ben-
efits, gain control benefits as well, focusing on the privileges
to negotiate with others.
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In the structural hole theory, there are several indicators
proposed to measure if one node is an SH spanner in a
network. Especially, ego network is used to represent the
one-hop network of a central node. A series of structural
hole metrics are further defined to show whether one node
is probably acting as an SH spanner, such as effective size,
efficiency, constraint and hierarchy. In the ego network, the
given node serves as the ego and all its neighbors are the
alters. All edges between these nodes are considered as the
edges of the ego network. SH spanners tend to have higher
values of effective size and lower values of constraint.

Efforts have also been made by researchers to detect SH
spanners from several perspectives. We roughly classify the
existing SH spanner detection algorithms into two categories.
One is related to information dissemination, trying to identify
the SH spanners as the most important nodes whose removal
will block the maximum information flows, or the most
important nodes connecting as many communities as possi-
ble [7], [9], [10]. The second category is based on network
centrality, which reflects the position and importance of a
node in a social network. Some researchers developed heuristic
algorithms on dynamic online social networks based on the
weak tie theory [8], or came up with the concept of inverse
closeness centrality to tackle the problem of finding top-k
SH spanners [11]–[13]. The above algorithms all consider the
entire social network.

Structural hole theory has been applied to other social
science theories in social networks like triads [14] and net-
work oscillation [15], also in various practical scenarios.
We classify the applications into several categories according
to the research fields. In enterprise settings, structural hole
theory provides valuable insights in diverse fields including
management science and innovative performance [16]–[19]. In
the field of information diffusion, researchers have conducted
experiments to testify the belief that SH spanners play a key
role in spreading information in social networks, and employed
the concept to maximize social influence [7], [20]–[23]. In
software development and mobile applications, structural hole
theory has also been adopted to understand both requirement
identification [24] and defects prediction processes of soft-
ware development [25], as well as interrelationships between
different mobile service sectors [26].

The advancements of structural hole theory also help ma-
chine learning tasks with the background of social networks.
Structural hole theory is important for both sociology and
computational social science. It plays an important role in the
aspects of studying critical positions in social structure [27],
information dissemination [9], and link prediction [7].

To summarize, this paper presents a comprehensive review
of structural hole theory in social network analysis with the
following contributions:

First, we provide a detailed review on the development of
structural hole theory, along with the metrics measuring the
importance of SH spanners in ego networks. We present the
applicability of structural hole theory in combination with
triads, network oscillation, and other social science theories
in social networks.

Second, we systematically classify the related detection

algorithms of SH spanners into information flow-based algo-
rithms and network centrality-based algorithms. We categorize
the applications of structural hole theory in practical fields into
enterprise settings, information diffusion in social networks,
software development and mobile applications, and machine
learning-based scenarios.

Last but not least, we propose future expectations and po-
tential research directions for SH spanner detection in dynamic
social networks and the applications of structural hole theory
in more practical fields including dynamic networks, non-
human networks and integration with graph neural networks.

This paper reviews the structural hole theory, along with
the related detection algorithms of SH spanners and the
applications of structural hole theory in practical fields in
sequence. Literature review was conducted by using sev-
eral major databases, including ScienceDirect, ACM Digital
Library, IEEE Xplore and SpringerLink. The rest of this
paper is structured as follows. In Section II, we review the
structural hole theory. SH spanner detection algorithms are
introduced then in Section III. Further, we summarize the
extensive applications of structural holes in social networks
in Section IV. We review the machine learning-based social
predictions leveraging the structural hole theory in Section V
and conclude this paper in Section VI.

II. FOUNDATIONS OF THE STRUCTURAL HOLE THEORY

In this section, we review the foundations of the structural
hole theory. In Section II-A, we illustrate how structural
holes are formed in a social network and how SH spanners
receive both the information and the control advantages. In
Section II-B, we review the metrics for ego networks to
measure the importance of SH spanners in terms of network
connectivity. In Section II-C, we introduce related social
science theories that incorporate the structural hole theory.

A. Illustration of Structural Hole Theory

Structural hole theory measures the interpersonal relation-
ship between users in social networks, especially the gains
people could enjoy from their connections. Related studies that
should not be ignored include the weak tie theory developed by
Granovetter in 1973 [8]. In the weak tie theory, relationships
between users are called ties. The relationships of a person
have two categories of strength, where strong ties refer to most
frequent and close contacts, and weak ties refer to less frequent
and less close contacts. The strength of a tie is weighted
based on the intimacy, emotional intensity, the amount of time
invested, and the extent to which the mutual assistance in the
relationship. The investigation by Granovetter shows that if
there is a strong tie between person A and B, it is possible
that A and B have many ties in common, which makes A
and B hard to be disconnected, as shown in Fig. 2. The study
of triads makes it more specific that if there is a strong tie
between person A and B, and another strong tie between A
and C, then there is at least a weak tie between B and C.
If the tie strength is stronger between person A and B, or A
and C, then the greater the probability that the tie strength is
also stronger between B and C. If removing a tie will increase
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the length of the shortest path between two nodes, this tie
acts as a bridge, which is more likely to be the source of
novel information than other ties. In most cases, the weak tie
theory holds that all bridges are weak ties in social networks.
However, Burt [6] pointed out that a relationship will generate
information benefits when it acts as a bridge over a structural
hole, regardless of the strength of the tie. A structural hole is
the lack of connection between two contacts, which is bridged
by brokers.

Strong Tie

A

B

C

Weak Tie

Fig. 2: Weak Ties and Strong Ties in a Social Network

In the scenario of social networks, Burt [6] first proposed the
non-redundant relationship between two contacts as a struc-
tural hole, where the non-redundant relationship is the lack
of both direct and indirect redundant connections. Individuals
who fill the structural holes are called structural hole (SH)
spanners [7]. Unlike the weak tie theory that focuses more on
the strength of ties for information propagation in the network
structure, structural hole theory starts from the social capital
which players could gain in competitive fields. Burt [6], [28]
explored more on the benefits that SH spanners could enjoy by
occupying the bridging positions in social networks. Because
of the refined work divisions, people gather into different
groups. People communicate much more closely in the same
group than across groups, thus gradually forming terminology
barriers between different communities. In a closed network,
people can obtain higher credibility information at a lower
cost. These closed networks, or communities, can promote
internal communications and community development, and
generate redundant and overlapping information. Network
structure serves as a proxy to learn the distribution of the
sticky information, which is difficult to move to other groups.
Burt et al. [27], Stovel and Shaw [29] studied the correlation
between advantages brought about by network structure and
the achievements made by those people who contact diverse
communities.

The potential value of structural holes lies in the infor-
mation benefits and control benefits. Information benefits
indicate that SH spanners are able to access multiple non-
redundant information sources, be early informed, and get
referrals from their contacts which offer future opportunities,
since they occupy the unique connecting positions between
communities. SH spanners are able to access more information
from non-redundant sources, where the information has better
dissemination than repetition. Katz and Lazarsfeld [30] found
that information, ideas and innovations usually flow first to
opinion leaders, and then to a wider range of people from

those opinion leaders. People who bridge structural holes are
more inclined to connect with opinion leaders to get valuable
information faster. Control benefits are from the distinct ag-
gregative information of the connected communities, realizing
the privileges for SH spanners to negotiate with users who
used to interact more within communities. Establishing and
negotiating relationships with contacts who are not in the same
group can also lead to better returns, especially when it comes
to detecting and developing profitable opportunities. Studies
in social networks [27] show that brokers will receive corre-
sponding compensation and benefits in processing information
from different communities, such as bonus compensation for
investment bankers, industry recognition for stock analysts,
and early promotion for managers.

In a word, SH spanners occupying positions between differ-
ent communities in social networks are rewarded with informa-
tion benefits and control benefits: diffusing information from
one group to another, negotiating and synthesizing different
ideas, and promoting cooperation in diverse fields.

A recent study by Burt [31] proposed the reinforced struc-
tural holes (RSH), showing that a structural hole is reinforced
by the cohesion within a community and the exclusion to
others. The more a structural hole is reinforced, the more
difficult it is to bridge it, while the more likely a successful
bridge would diffuse novel ideas and propagate valuable
information between communities.

B. Metrics of the Importance of SH Spanners

Structural hole theory is described by the ego network, with
the node set including one node as the ego and the surrounding
nodes to whom the ego is directly connected as the alters,
and the edge set including all the edges between these nodes.
Here, Burt [6] proposed some metrics to figure out structural
holes and distinguish SH spanners in the ego network. From
the metrics which can be classified as external measures for
individual actors [32], Burt showed that advantage was highly
related to information breadth, timing, and arbitrage. People
can gain better evaluations, recognition, and salary by taking
these advantages. In exploring the impact of connectivity
on SH spanners, he proposed some metrics for detecting
structural holes, including effective size, efficiency, constraint
and hierarchy. The effective size of a node is an indicator to
measure the non-redundant connections of a node. Formally,
the effective size of a node i, denoted e(i), is defined by

e(i) =
∑

j∈N(i)

(1−
∑
q

piqmjq), q 6= i, j (1)

where N(i) is the set of neighbors of i, each q is a node
different from i and j in the ego network, and piq is the mutual
weight of the edge linking i and q from the matrix of network
ties. And mjq is the mutual weight of j and q divided by the
largest weight between j and any of j’s neighbors. If contact
j is isolated from all other primary contacts, it indicates that j
provides one non-redundant contact in the ego network. When
the relationships between j and other contacts strengthen, the
value from j in the calculation will decrease, indicating that j
is gradually redundant in i’s network. Further, the efficiency
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is the effective size divided by the number of alters in the ego
network.

As for the constraint, it is a measure of the extent to which
a node’s entrepreneurial opportunities are constrained within
the ego network. The original definition of constraint in a node
i, denoted c(i), is

c(i) =
∑

j∈N(i)

(pij +
∑
q

piqpqj)
2, q 6= i, j (2)

where the definitions of N(i) and pij is the same as Eq. (1).
The constraint varies from 0 to 1. A node with constraint of
1 indicates that it has only one contact. When the constraint
of a node is closer to 0, there is fewer connections between
the node’s contacts.

Hierarchy is an indicator that measures the extent to which
the aggregate constraint on ego is concentrated in a single
contact. Here we denote the hierarchy of a node i as h(i), and
the definition is as follows:

h(i) =

∑
j∈N(i)(

cij
C/N )ln(

cij
C/N )

Nln(N)
(3)

where N is the number of contacts in node i’s network, cij is
the constraint between node i and contact j, and C is the sum
of constraint across all N contacts. The measure h(i) equals
0.0 indicates that the constraint is the same for i’s relationship
with each neighbor, while h(i) equals 1.0 indicates that all the
constraint is concentrated in a single contact.

Overall, the redundancy measures, like effective size, mainly
capture the features of connections. While the constraint mea-
sure is derived from the concept of dependence, indicated by
exclusive access. These measures can help us better discover
and evaluate structural holes.

C. Structural Hole Theory, Triads and Network Oscillation

Recent studies have also demonstrated the applicability of
structural hole theory in combination with other social science
theories in social networks, validating the robustness of the
theory. Here we present two examples. One applied structural
hole theory to study triads [14] and the other built a new theory
called network oscillation on top of structural hole theory [15].

A triad refers to a group of three people. It is one of the
simplest forms of human groups and forms the most basic
structures of sociological analysis. Triads can be closed ones,
where any two persons are connected, or open ones, where two
of the three people are unconnected. The problem of triadic
closure process, how a closed triad develops from an open
one, is fundamental in the evolvement of dynamic networks.
This mechanism is of particular interest to researchers and has
application in sociology as well as computer science.

In their study, Huang et al. [14] adopted structural hole
theory along with a series of other metrics to analyze the
triadic closure patterns of the users. They tested whether
occupying structural hole positions would affect the triadic
closure pattern. The results indicated that the existence of SH
spanners in the two unconnected users greatly increases the
triadic closure probability while the middle person being an
SH spanner is linked with a lower closure possibility. For

illustration, suppose A and C are both connected to B while
A and C are initially unconnected. If one of A and C occupies
a structural hole position, they are over 10 times more likely
to get connected to gain social resources. However, if B is
an SH spanner, the open triad is less likely to become closed
when compared with ordinary users, as A and C are likely
to be in separate communities and B may also be reluctant
to connect them and lose the network advantage. Based on
the observation, they integrated structural hole spanning in
the model they proposed for triadic closure prediction, among
other valuable network properties. In the experiment, their
TriadFG model achieved a much better prediction performance
than the benchmark algorithms.

While triad is a well studied concept, network oscillation
is a newly proposed theory based on structural hole theory.
Network structures are known to be related with particular
advantages, and SH spanners are believed to enjoy informa-
tion diversity, timing, and arbitrage advantages. Furthermore,
Burt and Merluzzi [15] suggested that the evolvement of the
network over time also influences the advantages it provides.
Among different dimensions of network volatility, they found
the oscillation between closure and brokerage highly related
to network advantages. In other words, network oscillation
means alternating between deep involvement in a community
and connecting across different communities. By analyzing
a group of investment bankers in a financial organization,
they found that oscillation strongly enhanced the advantage
brought by structural hole positions. They also gave out three
possible mechanisms behind this relation, which were left for
future work to verify. This work combined structural hole
theory with other social science theories and constructed a
new concept on top of them. The findings also shed light on
a new understanding of how to build networks that provide
advantages.

III. STRUCTURAL HOLE SPANNER DETECTION

In this section, we review the SH spanner detection al-
gorithms. Structural hole theory shows that SH spanners
are positively related to social success by bridging different
communities. Considering the impact of SH spanners on
social networks through both the information and control
advantages, it is essential to detect SH spanners in social
networks. SH spanners cannot be directly inferred only from
the relationships between non-redundant contacts. In order to
better understand the problem of detecting top-k SH spanners,
we classify the algorithms into two categories. In Section III-
A, we study the information flow-based algorithms. Some of
these algorithms focus on discovering key nodes that expand
the scope of information dissemination [7], [10], [33], [34],
and some focus on discovering key nodes whose removal will
maximally cut off information propagation [7], [9]. In Section
III-B, we study the network centrality-based algorithms [11]–
[13], [35], focusing more on whether a node occupies the
advantageous positions in network structures. All these algo-
rithms are summarized in Table I. We highlight open issues
and directions in Section III-C.
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TABLE I: SH Spanner Detection Algorithms and Their Pros and Cons

Category Reference Year Method Key Idea Pros and Cons

Information
Flow-Based
Algorithms

[7] 2013 HIS
MaxD

SH spanners are more inclined to build relation-
ships with opinion leaders in different commu-
nities, to whom ideas usually flow first

Require community labels in advance

[10] 2016 HAM
The authors proposed the harmonic function,
where the score of one node is defined as the
average score of its neighbor nodes

Jointly detect community and SH spanners; hard
to apply HAM to large-scale social networks

[34] 2018 NOBE
NOBE-GA

Both macroscopic structures (such as commu-
nity structure) and microscopic structures (such
as SH spanners) must be preserved at the same
time for a good graph embedding

Jointly detect community and SH spanners; rel-
atively less interpretable than other algorithms

[9] 2019 maxBlock
maxBlockFast

The authors identified the most important nodes
whose removal would block the maximum in-
formation flows

Faster and less computational cost and the de-
tected SH spanners block more than 24% of the
information propagations

[33] 2019 ESH

The authors introduced an entropy-based
method from a factor diffusion process, and ap-
plied distributed parallel computing for efficient
calculation

Achieve faster performance on large-scale net-
works since it applies distributed parallel com-
puting

Network
Centrality-Based
Algorithms

[11] 2015 WeakTie-Local
WeakTie-Bi

Weak ties [8] are important in the novel
information dissemination between remote
users [36]. Users with many weak ties are more
likely to fill the structural holes

Focus on dynamic social networks as well as
remote information sources; only rely on the
topological structure of the network

[12] 2015 BICC
AP BICC

The average shortest path of a graph will in-
crease significantly when structural holes are
removed

Efficiently calculate the proposed approximate
inverse closeness centrality for each node in the
articulation point set; only rely on the topolog-
ical structure of the network

[13] 2017 Greedy
AP Greedy

The authors estimated the upper bound of the
function which maximizes the average distance
of the graph after removing the node to filter
out unlikely solution earlier

Further optimize the accuracy of the AP BICC
algorithm and increase its efficiency; only rely
on the topological structure of the network

[35] 2020 FSBCDM
SH spanners can change the current trend of
community expansion and belong to multiple
communities

Jointly detect community and SH spanners;
relatively higher computational complexity than
other algorithms except HAM

A. Information Flow-Based Algorithms

In this subsection, we mainly review the problem of top-k
SH spanner detection from the aspect of information propa-
gation. There are algorithms of expanding information trans-
mission, as well as methods to maximally cut off information
dissemination to find SH spanners.

Considering the reverse process of strategic network forma-
tion with structural holes [37], Lou et al. [7] proposed two
models to tackle the task of mining top-k SH spanners in
large-scale social networks, assuming that community divi-
sions were given. They mainly studied three different social
networks: Coauthor network, which contains co-authorships
of papers published in 28 major conferences of computer
science; Twitter social network, which is a widely used
microblogging system, containing relationships of following
and being followed; Inventor network, which is a network of
inventors and contains co-inventing relationships. Based on
the assumption that SH spanners are more inclined to build
relationships with opinion leaders in different communities,
to whom ideas usually flow first, they designed the first
model named HIS. By defining the importance score and
the structural hole score of one node, they quantified the
importance and influence of each node who plays the roles
of both SH spanner and opinion leader. Also, the model
was derived from the intuition that getting a higher score

means a user can receive more information flows from her
neighbors. Besides, its convergence was also proven. Focusing
on information diffusion, the second model named MaxD was
designed by computing the minimal cut of a network, which
maximized the decrease of minimal cut after removing k nodes
to get the top-k SH spanners. Considering the NP-hardness of
the minimal cut optimization, they adopted an approximate
algorithm to achieve the goal of maximizing the decrease
of the minimal cut as much as possible. In addition, these
SH spanner detection models could make great improvements
in community kernel detection [38] and link prediction [39].
Based on the intuition that SH spanners tend to connect
with kernel members of different communities, the former
(community kernel detection) aims to detect kernel members
of different communities with the highest important scores,
where WeBA [38] algorithm performed better. The latter (link
prediction) is to predict the types of social relationships with
the help of structural hole analysis, where PFG [39] (Partially
Labeled Factor Graph) algorithm performed better. The main
challenge is that sometimes we cannot get community labels in
advance, which makes the data analysis process more difficult.

Since both community detection and SH spanner detection
need the topological structure in a network, the two tasks can
be put together and considered simultaneously. He et al. [10]
applied a harmonic function to jointly detect community and
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SH spanners based on the topological nature between them,
and the detecting algorithm was named HAM. They first
proposed the harmonic function, where the score of one node
is defined as the average score of its neighbor nodes. Based
on the harmonic analysis, they also introduced the l2,1-norm
penalty and orthogonality constraint to detect SH spanners and
communities more effectively. They dealt with the optimiza-
tion problem by both measuring the smoothness of commu-
nity structure and distinguishing SH spanners simultaneously
through matrix operations, and then proved its convergence
and computational complexity. They also defined a new metric,
known as the Structural Hole Influence Index (SHII) to eval-
uate information diffusion leveraging Linear Threshold model
and Independent Cascade model [40]. The SHII considers the
proportion of affected nodes outside the community to all
affected nodes in the process of information dissemination
so that it can distinguish SH spanners from center nodes
within the community. They achieved high performance in
both SH spanner detection and community detection tasks in
both synthesized and real-world datasets, including DBLP (a
co-authorship network), Karate Club (a friendship network in a
karate club), and YouTube (a video-based social network). The
performance was measured by diverse indicators like accuracy
(ACC), normalized mutual information (NMI), and average
cluster entropy (ACE). The deficiency of this algorithm is that
the time complexity is difficult to be reduced and the scale of
calculation is hard to be expanded, since the algorithm bases
on the matrix computation process.

Another study related to SH spanner detection worth men-
tioning is a spectral graph embedding method proposed by
Jiang et al. [34]. Based on their idea that a good graph
embedding algorithm should preserve both macroscopic struc-
tures (such as community structure) and microscopic structures
(such as SH spanners), they designed a spectral framework
NOn-Backtracking Embedding (NOBE) and its graph approx-
imation algorithm NOBE-GA. NOBE makes use of spectral
graph embedding technique and non-backtracking random
walk to jointly capture both community and SH spanner
structures. The main idea of their method is to transform the
original graph to an oriented line graph by converting each
edge to a node and defining a non-backtracking transition
matrix. The advantage of the oriented line graph is that SH
spanners would be placed into critical positions with more
concentrated edges’ weights so that the confidence of being
SH spanners will be higher. They then embedded nodes in
the oriented line graph by minimizing the loss functions, with
the consideration of Rayleigh quotient to tackle the objective
following the idea of [41]. The main process of NOBE is
divided into two steps: eigenvector decomposition and sum-
mation of embeddings of the incoming edges. Furthermore,
they presented an eigenvector decomposition algorithm on a
smaller scale matrix with provable approximation guarantees.
The performance of their method showed that it could tackle
both clustering and SH spanner detection tasks well. In SH
spanner detection, they used SHII proposed in [10] as an
evaluation metric, and also proposed a metric called Relative
Deviation Score to measure node rankings in the embedded
subspace. Their model outperformed several SH spanner de-

tection algorithms including HIS, AP BICC, and HAM under
Linear Threshold model and Independent Cascade model [40]
on Karate, YouTube, and DBLP datasets.

Motivated by the discovery mentioned in [27] that different
SH spanners show significantly different performance and
returns, Xu et al. [9] devised a randomized algorithm as well
as a fast, scalable, and heuristic algorithm, called maxBlock
and maxBlockFast, respectively. The basic idea came from
the findings by Burt [42] that one person not only builds
more bridges between otherwise unconnected communities to
gain more rewards, but also needs to establish strong ties with
her connected communities. Therefore, maxBlock dealt with
the problem of top-k SH spanner detection by identifying
the most important nodes whose removal would block the
maximum information flows, with consideration of tie strength
of nodes in social networks. Xu et al. adopted the Independent
Cascade model [40] to calculate the probability of information
diffusion. Besides, they considered an approximate solution to
block more information propagations. Due to the challenge
of calculation in large-scale networks, they then proposed
a fast heuristic algorithm called maxBlockFast, fully using
the property of the dominator tree derived from the live-
edge graph model through Monte Carlo simulations. Through
extensive and complete experiments, the detected SH spanners
can better disseminate information compared with existing
algorithms. Moreover, the heuristic algorithm achieved shorter
time cost without much loss of accuracy. They found that the
detected SH spanners block more than 24% of the information
propagations.

Some existing methods [7] [10] [12] face huge challenges in
large-scale networks, limited by the computational complexity
of the algorithms. In order to achieve faster performance on
large-scale graphs with billions of nodes and edges, Li et
al. [33] proposed a structural hole detection algorithm named
ESH, based on a distributed parallel graph processing frame-
work called PowerGraph. Unlike previous methods focused
on the community structure, their proposed model introduced
an entropy-based method from a factor diffusion process, and
applied distributed parallel computing. Since an SH spanner
is more likely to collect more diverse factors diffused from
different communities, the entropy of its factors tends to be
higher. Meanwhile, an interior node in a community is likely
to collect homogeneous factors from other nodes within the
same community, resulting in a low entropy. Therefore, they
tried to distinguish SH spanners by evaluating the likelihood
through the entropy of the factor distribution process. They
then conducted several experiments comparing three different
methods. The results showed that ESH is a good choice for
structural hole detection for its capability of dealing with large-
scale networks with billions of nodes and edges.

B. Network Centrality-Based Algorithms
Different from the SH spanner detection algorithms that

concentrate on information dissemination in the previous sub-
section, the algorithms discussed in this subsection mainly
detect SH spanners from the centrality aspect of network struc-
tures, considering whether the nodes occupy the advantageous
positions in social networks.
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Song et al. [11] developed a heuristic algorithm to detect
top-k brokers based on the weak tie theory and mainly focused
on dynamic social networks, as well as remote information
sources. Same as the previous methods, they also defined
the problem of top-k broker detection and showed its NP-
hardness by reducing it to the k-densest subgraph problem.
The novel idea of their model is derived from the evidence
that weak ties [8] are important in the novel information
dissemination between remote users [36]. Users with many
weak ties are more likely to fill structural holes between
remote users. Therefore, the authors first devised some pre-
liminary experiments to show that brokers are correlated
with the number of weak ties. They also defined the tie
strength of an edge, leading to the definition of path strength.
Then the strongly connected groups have been calculated by
applying Tarjan’s algorithm [43] given the threshold of path
strength. Furthermore, they proposed incremental algorithms
to deal with the high complexity and handle the dynamic
nature of social networks. The WeakTie-Local algorithm ad-
dresses unidirectional network problems, while the WeakTie-
Bi algorithm addresses bidirectional network problems. They
also enumerated several possible situations after inserting
or deleting an edge dynamically and gave corresponding
solutions. They compared the performance of their proposed
algorithms with the existing methods, such as PageRank and
betweenness centrality (BC), to validate the effectiveness on
both DBLP and Twitter datasets. In addition, they conducted
several experiments to measure the sensitivity and scalability
of their algorithms. As for applications, they discussed that
top-k brokers can also be used to mention recommendations
to expand the spread of tweets.

Rezvani et al. [12] came up with the new concept of inverse
closeness centrality to tackle the problem of top-k SH spanner
detection. The main idea is that when structural holes are
removed, the average shortest path of the induced subgraph
will increase significantly. Therefore, they first devised a basic
algorithm called ICC. Due to the high time complexity of this
algorithm, they then improved it and developed an efficient
algorithm BICC, namely the bounded inverse closeness cen-
trality, inspired by the sparsity and the small world law. In
addition, they designed a more accurate algorithm by consid-
ering both bounded inverse closeness centrality of vertices and
articulation points (APs) of the network, namely AP BICC
algorithm. Here the APs are referred to these SH spanners,
with the instinct property that tend to connect multiple isolated
communities. They also showed the process of finding APs.
Furthermore, using a Depth-First Search traversal on the graph,
they efficiently calculated the proposed approximate inverse
closeness centrality for each node in the AP set.

Xu et al. [13] further optimized the accuracy of the
AP BICC algorithm and improved its efficiency. Comparing
with the former work [12], they supplemented a detailed
proof of the NP-hardness of top-k SH spanner problem, and
proposed two novel algorithms, i.e., Greedy and AP Greedy,
which can filter out unlikely solutions earlier. As for the
greedy algorithm, in each iteration, it identifies a node from
the graph by estimating the upper bound of the function which
maximizes the average distance of the graph after removing

the node. Besides, the filtering techniques are based on the
consideration of APs. After defining the quality of solution
based on the finding by Burt [6] that an influential SH spanner
has a larger ratio of the number of ego’s communities to
the number of its neighbors, the novel algorithms showed
much better performance in the SH spanner detection task than
those existing ones, such as AP BICC, Central, PathCount,
2-Step, PageRank, Constraint, HAM, HIS, and MaxD. They
also confirmed that the model can well capture the features
related to SH spanners.

Since the above models in this subsection are based on
the average distance of a social network for detecting SH
spanners, removing SH spanners will maximally increase the
mean distance of vertices in the residual network. Therefore,
one of the distinguishing features worthy mentioning is that,
their models only rely on the topological structure of the
network, without given community labels.

Zhang et al. [35] recently proposed a new algorithm named
FSBCDM to discover SH spanners based on diminishing
marginal utility and the previously designed community forest
model [44]. According to the community forest model, a
community gradually increases from the core backbone, and
the expansion of the community becomes smaller as more
nodes join the community, which complies with the law of
diminishing marginal utility. In the context of community
reconstruction, FSBCDM continues to add neighboring nodes
with the maximum sum of backbone degree centrality. Some
nodes break the law of diminishing marginal utility, making
them the first type of SH spanners since they can change the
current trend of community expansion. Another type of SH
spanners are defined as the nodes at the intersections between
communities, and they belong to multiple communities. The
FSBCDM algorithm sorts the above two types of SH spanners
according to the SHII metric proposed in [10] to find the
final top-k SH spanners. The authors confirmed that FSBCDM
performed slightly better than HIS, MaxD, AP BICC, and
HAM.

C. Discussion and Future Expectations for Structural Hole
Spanner Detection

The problem of SH spanner detection is derived from the
reverse process of strategic network formation with structural
holes. Kleinberg et al. [37] designed a dynamic and strategic
game to fill the structural holes and form links to bridge
previously unconnected communities in a social network,
with the aim of studying the process of network formation
with structural holes. Ghaffar and Hurley [45] also derived
a new centrality measure called structural hole centrality, to
recognize actors with high social capital in the process of
strategic network formation. However, considering the reverse
direction of their research, it is still significant to detect
who plays the role of SH spanner in large social networks,
which leads to all the aforementioned SH spanner detection
algorithms introduced in this section.

The SH spanner detection algorithms mentioned above have
their own pros and cons. Firstly, HIS and MaxD need to
know the ground truth community labels in advance, which
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will make the data availability conditions more challeng-
ing. From the perspective of time complexity, the ESH can
achieve faster performance on large-scale networks since it
applies distributed parallel computing. The time complexity
of AP BICC, AP Greedy, HIS, and MaxD is less than
HAM and FSBCDM, as the former algorithms (AP BICC,
AP Greedy, HIS and MaxD) only detect SH spanners, while
the latter ones (HAM and FSBCDM) detect both communities
and SH spanners. Since the time complexity of HAM is hard
to be reduced due to the matrix computation process, it is
difficult to apply HAM to large-scale social networks. As for
interpretability, the spectral graph embedding methods like
NOBE or NOBE-GA are relatively less interpretable than other
algorithms.

The current research on SH spanner detection is mostly on
static networks. However, many real-world networks, espe-
cially social networks, are not static but constantly changing.
Individuals keep developing their connections with others in
social networks, while the models neglecting the dynamics in
a social network will fail to capture sufficient and reliable
information. Different evolution patterns of individuals in
social networks may reflect their personality traits, as well
as changes in their social statuses and influence in dynamic
networks. Similar to dynamic network embedding [46], future
works of SH spanner detection may consider proposing new
methods in dynamic networks. A particularly interesting di-
rection for future works on SH spanner detection is to extend
static SH spanner detection models to dynamic settings, with
the definitions of related functions for updating other nodes
after dynamically adding or removing nodes or edges in a
social network. As the triadic closure process is a basic unit
during the evolution of networks, we may introduce triads to
help measure the dynamic changes of network structures, like
the proposed model DynamicTriad in [47]. Furthermore, we
can also incorporate the dynamic representations of nodes on
dynamic social networks to detect SH spanners, which can
provide more sufficient and real-time features for SH spanner
detection.

IV. STRUCTURAL HOLE-RELATED APPLICATIONS IN
PRACTICAL FIELDS

In this section, we will present the development of appli-
cations of structural hole theory in practical settings, while
Section V will be dedicated to introduce the applications in
machine learning-based social prediction. All the applications
discussed are summarized in Table II. We organize this section
based on the fields of the applications. In Section IV-A, we
present the applications of SH theory in enterprise settings.
Next we introduce applications in information diffusion in
Section IV-B. In Section IV-C, we review the applications of
the structural hole theory in the field of software and mobile
application development. Finally, Section IV-D discusses the
trends of applications of SH theory and makes anticipation for
future studies.

A. Applications in Enterprise Settings
In enterprise settings, structural hole theory offers a new per-

spective to understand how social connections affect employ-

ees’ well-beings and their decisions, as well as the mechanisms
lying behind. Taking SH spanners into consideration provides
valuable insights in analyzing the performance of employees
and their collaborative behaviors. Such insights can further
provide individuals with advice on how to develop their social
networks.

1) Performance and Innovativeness: Studies in structural
hole theory have suggested a robust relationship between struc-
tural hole positions and higher managerial performance. Ac-
cording to Burt et al. [60], managers occupying structural hole
positions are generally evaluated to have better performance
than those whose connections are densely interconnected.
These managers also tend to be more highly paid, promoted
faster, and more likely to be recognized as leaders. Rodan [48]
analyzed the underlying mechanisms behind this relationship
and identified innovativeness as the key factor. Moreover,
Wang et al. [18] found that leader-member exchange is im-
portant when out-group weak ties contribute to innovative
behaviors. In another study, Choi and Lee [17] observed a
positive relationship between the inequality in the level of
structural holes between group members and the innovative
performance of the group. Also, Ye et al. [16] leveraged the
structural hole theory to identify new employees with high
potential.

Rodan [48] conducted a survey-based study to analyze the
driving mechanisms of the widely-observed higher manage-
rial performance achieved by SH spanners. Among the five
theoretical mechanisms suggested by the structural hole the-
ory: autonomy, competition, information brokering, opportu-
nity recognition, and innovativeness, he found innovativeness
playing the key role in mediating network structures and
better performance, rather than information brokering. As SH
spanners enjoy positional advantages by playing a bridging
role in their social networks, they get access to non-redundant
and diverse information and perspectives, so they can leverage
advantages among multiple groups and are more likely to
develop creative new ideas, which then contribute to better
evaluated performance.

As weak tie theory describes a similar phenomenon with
structural hole theory, a work revealing the mechanism why
out-group weak ties contribute to higher innovation perfor-
mance is also worth mentioning here. In the study, Wang et
al. [18] conducted an investigation on data collected from
a high-tech firm. Their result indicated that a special kind
of strong tie, leader-member exchange, greatly contributes to
the positive relationship between the existence of weak ties
connecting different groups and high innovation performance.
Such a finding can help expand the theory by revealing the
underlying mechanism through which structural holes may
contribute to innovative behaviors.

Choi and Lee [17] also studied the relationship between
structural holes and innovative performance, but on a group
level. They collected data from ten teams of an interna-
tional company, and adopted NBD1 of patented products
to quantitatively measure the innovation performance of the

1New business development (NBD) is a key innovation index of healthy
business sustainability.
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TABLE II: Applications of the Structural Hole Theory

Field Reference Description

Enterprise settings

[48] Underlying mechanism of higher managerial performance achieved by SH spanners

[18] Contribution of leader-member exchange to the positive relationship between out-group weak
ties and higher innovation performance

[17] Inequality in level of structural holes between group members contribute to the innovative
performance of the group

[19] Structural holes’ effect of on a country’s innovative performance

[16] Identification of high potential talents from newly-enrolled employees of a company

[49] How people use network information to choose new collaborators

[50] Recommendation of possible weak ties to employees in an organization

Information diffusion
[21] Influence maximization (IM), maximization of the influence spread in an online social graph

[22] Social-role aware emotion contagion for emotion prediction

Software development

and mobile applications

[24] Analyzing requirement identification from the perspective of stakeholders’ network structures

[26] Relationship between application service categories as well as individual apps

Individual-level ML tasks

[16] Identification of high potential talents from newly-enrolled employees of a company

[51] Self-disclosure behaviors of OSN users

[52] Discriminating functional users from social users

[22], [53] Predicting users’ emotional statuses utilizing social structures

[54] Predicting future tourist arrival of countries / regions using social network predictors

[55] Proposing an improved network constraint coefficient for measuring importance of nodes

Connection-level ML tasks

[50] Recommendation of possible weak ties to employees in an organization

[56] Predicting future co-investment behaviors of venture capitals

[57] Proposing a sampling-based method to find the most similar nodes

[58], [59] Classifying different types of social ties

teams. Their results showed that the inequality in the level of
structural holes in a team increases over time, having a positive
effect on the innovation performance. In addition, the results
demonstrated that higher job grades were related to greater
structural holes, and people in the sales group were observed
to have higher structural hole values than other job function-
alities. Such findings can be inspiring to future research and
applications in the business field. While prior studies had
only covered descriptive analyses of social networks, Choi
and Lee collected data from an enterprise and validated the
applicability of structural hole theory in promoting innovation
performance in new business developments.

Furthermore, Choi et al. [19] approached the problem at a
national level. They analyzed the characteristics of the global
knowledge spillover network, where countries are viewed as
nodes instead of humans, and found a positive effect of
structural holes on a country’s innovative performance.

The studies mentioned above validate the advantage gained
by spanning a structural hole in business social networks,
contributing valuable insights to companies when it comes
to evaluating and cultivating employees as well as managers.
Uncovering the mechanism behind this advantage offers fur-
ther understanding and foresees various applications in human
resource management. For example, Ye et al. [16] adopted
the theory to identify high potential talents (HIPOs) from
newly-enrolled employees of a company. The details of the
model would be further introduced in Section V. Besides, these
findings provide insights on how to gain network resources

to achieve advantages and improve performance, for not only
individuals but also organizations and countries.

2) New Connections and Collaboration: Aside from in-
dividual performance, structural hole theory also casts light
on the establishment of new connections and collaborative
relationships within the social network of an enterprise. Gao
et al. [49] adopted structural hole theory to understand how
people select new collaborators based on network information,
while Ghaffar et al. [50] aimed to recommend potential weak
ties to employees to help them gain network advantages.

Collaboration is universal within organizations and is central
to success. As organizations have become more distributed
and teams tend to change more frequently, individuals are
constantly facing the choice of selecting new collaborators. To
understand how people leverage network information in this
decision-making process, Gao et al. [49] conducted a scenario-
based survey on the U.S. and Chinese employees of a global
company and studied the difference in the strategies they
adopted in collaboration seeking. Their findings suggested that
Chinese respondents more closely followed the closure model,
favoring candidates with shared contacts. In contrast, U.S.
respondents partially followed the structure holes model in that
they valued all kinds of resources equally, but did not adhere
to it in their response to shared contacts. A surprising finding
was that neither group of respondents entirely followed the
structural hole theory, which had been supported by multiple
prior studies in U.S. organizations. This may be explained by
the fact that not much research on structural holes had studied
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decision-making based on the social network information, so
they also pointed out the need for further study to compare
online vs. offline collaboration choices. This work indicated
the need for incorporating other theories as supplements to
the structural hole theory when adopted to model people’s
behaviors in practical settings.

In addition, as both structural hole theory and strength of
weak ties theory indicate that bridging roles and weak ties
can provide individuals with valuable resources related to
success, building new weak ties in the network is believed to
be beneficial to individuals. Based on such inspiration, Ghaffar
et al. [50] recommended possible weak ties to individuals to
help them gain benefits in information access.

B. Applications in Information Diffusion in Social Networks

Since SH spanners occupy crucial structural positions con-
necting different communities, they are believed and observed
to play a key role in spreading information in social networks,
especially between communities. Researchers have conducted
experiments to testify this belief and employed the concept to
maximize influence.

Firstly, structural hole theory suggests that SH spanners
are crucial in the diffusion of information and also generate
information benefits both for the whole network and for
themselves. According to Lou and Tang [7], 1% of users
occupying the structural hole positions control almost 80%
of the information spread between communities, and 25% of
all the information diffusion in Twitter. Such intuition was
then utilized by them to effectively identify the top-k SH
spanners in large social networks, which has been introduced
in Section III. Moreover, a survey-based study by Fritsch
et al. [20] verified that SH spanners contributed to the sub-
networks they help to connect by transferring information.
Such findings fuel the application of structural hole theory
in the field of Influence Maximization (IM).

Influence maximization tackles the problem of identifying a
set of seed nodes to maximize the influence spread in a social
network. The problem used to be costly and inefficient using
conventional greedy algorithms that fail to include network
structure features. To this end, Zhu et al. [21] proposed a
structure-hole-based algorithm (SHIM) for influence maxi-
mization in large OSNs. The intuition is that while opinion
leaders are important for information diffusion within com-
munities, SH spanners play a central role in spreading in-
formation between different communities. By first identifying
the SH spanners and then choosing those with high values
in both structural hole and influence measures as seeds, the
scale of the problem can be greatly reduced by filtering out
the non-structural hole users. They proposed an algorithm
called structure hole value calculate (SHVC) to compute the
structure hole values for users and identify SH spanners. In the
experiment, they reported that their proposed detecting method
was the fastest one compared with the existing algorithms,
i.e., DGSH, HIS, and MaxD. By further combining structural
hole values and influence values, their influence maximization
algorithm performed the fastest among all compared methods
and yielded the most influential results as well.

Yang et al. [22] further extended the study by studying the
role of SH spanners in emotion contagion. They investigated
how users’ positions in the social network affected their
influence on emotional statuses of their friends. Surprisingly,
their results showed that in emotion contagion, SH spanners
may be less influential than ordinary users on the whole,
different from what was observed in information diffusion [6],
[7]. They also found users with social roles of opinion leaders
and SH spanners more influential than ordinary users in
positive emotion contagion while less influential in negative
emotion contagion. Based on the observation, they proposed a
new model to predict users’ emotional statuses utilizing social
structures, learning the influence strength between friends
by considering their social roles. Their model achieved a
strikingly high improvement compared with methods that do
not consider correlation features.

C. Applications in Software Development and Mobile Appli-
cations

Softwares are now everywhere in people’s daily life. In
recent decades, we have witnessed the fast growth of mobile
application services. As a result, structural hole theory has
also been adopted to understand the requirement identification
process of software development, as well as interrelationships
between different mobile service sectors.

Requirement Engineering (RE) is the process of determin-
ing, documenting and maintaining requirements in the engi-
neering design process. It is a common role in systems engi-
neering and software engineering. Requirements identification
is one of the major objectives in the RE process, involving
multiple stakeholders. As a result, stakeholders’ interactions
have been proven a crucial factor in success. Bhowmik et
al. [24] explored structural hole theory to analyze requirement
identification from the perspective of stakeholders’ network
structures. As structural hole theory suggests that SH spanners
can produce new ideas, they verified in their analysis that
stakeholders occupying structural hole positions did contribute
a greater number of new requirements compared with ordinary
users. Nevertheless, they found some exceptional cases such
as project leaders, who were commonly found on structural
hole positions but typically did not contribute many new
requirements. As a result, they demonstrated the need to
take into consideration the roles of stakeholders. By mapping
people in a social network to stakeholders and new ideas
to new requirements, they confirmed the applicability and
effectiveness of the structural hole theory in RE. They further
suggested the need of modifying structural hole theory to adapt
to the RE process by considering the stakeholders’ roles. This
also provided valuable insights for future studies or potential
applications of the theory in new fields.

Mobile apps have also become a fundamental part of
people’s lives in recent decades. Kim et al. [26] studied the
relationship between application service categories as well as
individual apps by constructing networks based on keywords
similarity. They adopted structural hole theory in analyzing
such interrelationships. They calculated the BC value as the
quantitative index indicating the position and influence of a
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category or an individual app. In this way, they took into
consideration apps’ importance as brokers. In terms of the
category network, they found business and travel categories
have high BC values and suggested that they may play
intermediary roles in the network. They also concluded that
the relative importance of a category does not rely on its scale.
They then constructed the micro app networks of each category
and grouped categories based on the network characteristics.
One of the clusters, including entertainment and utilities,
is observed to have low network density and concentration
but high node centrality values, especially BC values. These
categories are believed to mediate the flow of information
between the remaining clusters.

D. Discussion and Possible Future Expectations

Recent works have proved the applicability of structural
hole theory in various fields, and we are convinced that the
theory will be employed in more fields in the future. Also,
the applications in existing fields will continue to evolve over
time. We anticipate that the observations reported by prior
studies will be put into more practical uses in the real world.
For example, the observed relationship between SH spanners
and higher performance and innovation can be leveraged to
spot employees with prospective high performance or the
ones playing a crucial role in the organization, just as Ye
et al. [16] did in their work. The key role structural holes
play in spreading information also inspired the new influence
maximization algorithm [21] .

Besides, structure hole positions can help analyze the dy-
namic evolvement of network structures, which is common
in real settings. Choi and Lee [17] have explored this by
analyzing the inequality in the level of structural holes between
team members. How structural hole positions emerge, change,
and disappear can also help reveal the nature of a network.

Meanwhile, we also expect more applications in networks
where nodes are non-human, such as in [19], [26], since the
observation in social networks can also hold true when the
nodes become organizations, countries or even items.

V. STRUCTURAL HOLE THEORY-AWARE MACHINE
LEARNING

Machine learning (ML) is an important aspect of modern
business and research, and has been known as an essential tool
in analyzing networks. Researchers have developed numerous
ML models for purposes like generating user embeddings,
classifying users and connections, and identifying potential
connections. Structural hole theory has also been integrated
into many models as a fueling social theory, helping obtain
useful results.

Basically, machine learning-based applications in social
networks can be divided into individual-level tasks and
connection-level tasks. In individual-level tasks, in order
to understand individual behaviors and properties, machine
learning-based applications of structural hole theory are im-
plemented in both enterprise settings [16] and online social
networks (OSNs) [51], [52], [61], as well as leveraged by

researchers to predict user emotions in image social net-
works [22], [53]. In connection-level tasks, related works
mainly focus on link prediction and edge classification. Link
prediction aims to predict future links based on the current
network structure, like recommending possible weak ties to
employees in an organization [50] and predicting future co-
investment behaviors [56]. The edge classification task is also
beneficial since different types of social ties tend to influence
people differently [58], [59]. With the help of structural hole
properties used in machine learning methods, social theory-
based features are of crucial contribution to the prediction
performance.

In this section, we will present several recent works
adopting the structural hole theory in the field of machine
learning-based social prediction. In Section V-A, we focus
on individual-level tasks, concentrating on node properties
and behaviors, such as node classification. In Section V-B,
we introduce works concentrating on connection-level tasks,
which care about distinguishing connection types as well as
link prediction problems. After that, we discuss the trends and
our expectations for future studies adopting the structural hole
theory for machine learning in Section V-C.

A. Individual-Level Tasks: Analyzing Individual Behaviors
and Properties

As one of the major node properties to be considered
when investigating social networks, structural hole property
has been employed as a fundamental measure to analyze social
graphs to understand users’ behaviors. Studies have also found
a relation between structural hole positions and user types
or user behaviors in OSNs. By paying attention to users’
structural positions, we can better understand and predict some
of these properties. The following works mainly formulated
the problem as a node classification task.

To begin with, Ye et al. [16] adopted structural hole theory
to identify high potential talents (HIPOs). HIPOs refer to
employees who are believed to have high competency and
are regarded as potential future leaders. Therefore, identifying
the HIPOs among new employees is a central concern in
human resource management. However, the current identifying
method relying on manual selection is subjective and prone to
bias. Driven by such a motivation, Ye et al. proposed a machine
learning framework to identify HIPO employees by modeling
their behaviors in social networks within the organization,
inspired by the intuition that HIPOs usually manage to gain
more social capital than average employees. They modeled
the social capital of employees, combining both the local and
global social information, with the global social information
designed to indicate whether an employee plays a crucial
role in the network (for example, spanning a structural hole).
They adopted 9 metrics in total reflecting node centralities,
including network constraint and betweenness centrality fueled
by structural hole theory. They then feed the representation
result along with ego network representation generated by
GCN2 to an LSTM model with a global attention mechanism.

2GCN (Graph Convolutional Network) and LSTM (Long Short-Term
Memory) are both neural network models in machine learning.
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Altogether, their model achieved significantly better results
than all the benchmark methods. And their experiment also
validates the contribution by both the local and global social
network information.

On OSNs, users can decide whether or not to expose their
personal information to the public. Intending to understand
users’ self-disclosing behaviors and their relations with the
overall network structure, Kwon et al. [51] conducted a
study at both ego networks and community networks, and
they presented the possible relation between the self-disclosure
behaviors of users and structural hole theory. For all the
possible network advantages mentioned in Section II, it is
believed that SH spanners may be more likely to disclose their
personal information on the platform to leverage these advan-
tages by playing the bridging role. On the local scale, they
first analyzed users’ self-disclosure behaviors with regard to
their ego networks and found a significant positive relationship
between the openness of a user and the effective size of her
network, which is an indicative measure of SH spanners. They
then moved to the community scale and found that open users
have significantly higher betweenness centrality. These results
all confirmed the essential role structural holes play in the self-
disclosure behaviors of users. Finally, they conceived a task to
predict the self-disclosure levels of users using only network
properties and chose Random Forest (RF) as a classifier, which
could calculate the importance of each feature. Their model
achieved a significant improvement of performance compared
with the benchmark by 12% in the F1-score, and in the model,
they identified betweenness centrality and effective size among
the top three most important features.

Nowadays, OSN platforms have seen the emergence of
functional users, such as online business runners. These users
tend to have more friends, often sparsely connected with each
other, and they have not been studied much by existing studies.
To distinguish these functional users from social users, Ying
et al. [52] adopted concepts from the structural hole theory to
develop metrics for measuring the diversity of a user’s friend
circle in their model. Their work was based on the notion
that functional users tend to have a more diverse ego network,
so they adopted effective size from structural hole theory as
a measure to indicate the diversity of a user’s friend circle.
They were then inspired to give out a more general definition
of ego network diversity, with actual size and effective size
being two special cases of the broad definition. By further
changing the factors in the definition, they proposed two
new diversity metrics. They formulated a binary classification
problem discriminating functional users from social users to
evaluate the performance of the four measures. Their model
achieved the best performance with the measure Expected
Number of Communities (ENC) in all evaluation metrics.
Their work sheds light on structural hole theory by introducing
ENC as a new metric to measure structural holes, which may
be of inspiration to future researchers who are faced with
a similar situation where access to the whole graph is not
granted.

Moreover, structural hole theory is also leveraged by re-
searchers to help predict user emotions in image social net-
works. Founded on the investigation on emotion contagion,

which has been introduced in Section IV-B, Yang et al. [22]
proposed a new model to predict users’ emotional statuses
utilizing social structures. While previous attempts to predict
users’ emotional statuses treated individuals independently and
failed to consider the interactions among them, they improved
by taking the social role-aware emotion contagion into consid-
eration. Besides learning from historical emotions and images
posted, their model was also designed with the ability to learn
the influence strength between friends by considering their
social roles. They combined all the three aspects in a factor
graph model as three different layers. By taking social roles
into consideration, they let users with the same social roles
share the same parameters in the influence model to reduce
the complexity and improved the practicability of the model.
In the experiment, the proposed model achieved a 44.3%
improvement on average compared with methods that do not
consider correlation features.

Cai et al. [53] also aimed at inferring emotion based
on image social network information. They leveraged group
information in their proposed factor graph model. Particularly,
they found out that groups with a higher ratio of SH spanners
also exhibited a higher emotion homophily. The observation
suggested a potential positive effect SH spanners have on
emotion diffusion and the metric was adopted to construct
group features. By combining image content, user personal-
ization and group information, their model achieved the best
performance among all their compared methods. Though the
observation drawn from two different datasets by the two
studies might not seem consistent, they both suggested that
SH spanners play a distinct role in spreading emotions. Also,
their result indicated that taking into consideration such roles
makes great contribution to the prediction models, just as it
did with all the other studies mentioned.

While humans are the examined social entities in most
existing models, Yuan [54] adopted a tourism social network,
where countries / regions are actors like in [19] introduced
in Section IV-A. It was the first work to leverage social
network information, namely degree centrality and structural
holes measured by network constraint, as predictors to predict
future tourist arrivals. The result of the LSSVR model3 showed
that the use of social network predictors achieved better
performance than traditional economic predictors.

Network constraint is a widely-used structural hole indicator
in machine learning methods. However, Lu [55] pointed out
that many nodes in the networks, especially in power networks,
lack a triangular structure, making it difficult to calculate.
So Lu proposed an improved network constraint coefficient,
taking the influence of neighborhood nodes into consideration.
Lu then combined the prospect theory [62] with improved
TOPSIS, a multi-attribute decision making method, to evaluate
the importance of network nodes. Lu finally confirmed the
effectiveness of the SH-based indicators with experiments, in
order to provide inspiration to future studies.

3Least-squares support-vector machines, a version of SVM (support-vector
machines).
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B. Connection-Level Tasks: Link Prediction and Classification

Link prediction aims to predict future links based on the
current network structure or infer the missing links from
a partial network. It is a fundamental problem in network
science with abundant real-world applications. As mentioned
in Section IV, Ghaffar et al. [50] formulated a link prediction
problem to recommend possible weak ties to employees in an
organization. While prior work had been done with link pre-
diction in OSNs, they were the first to address link prediction
in the Enterprise Social Networks (ESNs), i.e., social networks
inside enterprises, which are nowadays utilized by employees
for various purposes such as sharing information and searching
for experts. For optimization in the link prediction process,
they introduced a social-organization overlap factor to favor
candidates from different communities and discourage those
in the same team with the ego. Their results also demonstrated
high performance in terms of AUC and precision.

Another work in link prediction aimed to predict future
co-investment behaviors. Venture capital (VC), i.e., financial
capital provided for startup companies, is of great importance
in the high-tech industry and has benefitted many of the major
companies in the field. Motivated by the fact that over 80%
of the VC investments are related to at least two investors,
Wang et al. [56] studied the VC co-investment behavior.
They employed a total of 81 features to design a model for
predicting future co-investment behaviors. In particular, they
designed a group of 20 features related to structural hole theory
to indicate the centrality of the nodes, involving network
constraint and betweenness centrality. They then conducted
feature selection and identified two of the betweenness features
as the top 10 prominent features. They found that larger values
of betweenness centrality of both sides were related to a
higher possibility of future co-investment, which is consistent
with the intuition suggested by structure hole theory. They
implemented the prediction task by proposing a structural
balance based factor graph model (SBFG), and the model
was able to achieve a satisfactory prediction performance and
out-performed all the compared methods. Furthermore, with
only the top 10 selected features, they achieved an accuracy
of around 90 percent, which dropped by only 0.18 percent
compared with using all the features.

Similarity search is a common method used in link pre-
diction tasks. Zhang et al. [57] proposed a sampling-based
algorithm called Panther to retrieve the most similar top-k
nodes. When measuring the performance of the algorithm
and other baselines, they adopted top-k SH spanner detection
as a task to evaluate the accuracy, fueled by the intuition
that SH spanners share the same structural patterns. They
used network constraint as ground truth, and then fed a
few seed users into the model to find other SH spanners
through the sampling method. In the experiment, Panther
achieved consistently better performance in terms of accurately
finding SH spanners than other compared methods. They also
built a system recommending similar authors based on their
algorithm. This work further validated the applicability of
structural hole theory in link prediction tasks.

Aside from link prediction, the classification of links also

has numerous applications in social network analysis. In a
network, there exist different types of social relationships. A
simple example is family, colleague, friend, and acquaintance
relationships in a social network. Different types of social ties
tend to influence people differently, so it is useful to identify
the types of them. Tang et al. [58] incorporated the struc-
tural hole theory among several basic social science theories,
including social balance theory, social status theory and the
theories of strong ties and weak ties, in their transfer-based
factor graph model for classifying social ties. Their analysis
of the data revealed that users are more likely (with a 20%-
152% higher chance) to have the same type of social tie with
an SH spanner, especially those unconnected users. Unlike
domain-specific features, such observation based on social
science theories holds true in different networks in diverse
domains, making transfer learning more effective. Hence, they
defined six features to indicate structural hole properties in
the model. In the experiment, their TranFG model was able to
achieve great performance and significant improvement over
alternative methods, and their further examination validated
that social science theory-based features made crucial contri-
bution to the performance.

Similarly, Chen et al. [59] also worked on a transfer learning
framework for social tie prediction and leveraged structural
hole theory among several social theories to make it possible
to transfer the knowledge learned from a well-labeled graph
to the target graph. In the model, they defined the existence
of structural holes as an attribute of each edge as part of the
input. Their evaluation showed that their model outperformed
traditional methods and was also less time-consuming than the
TranFG model.

C. Discussion and Future Expectations
Structural hole theory offers quantitative measurement fea-

tures serving as input features of machine learning models
to help improve the performance. On the individual level,
measures such as effective size, network constraint and be-
tweenness centrality are effective in predicting user type and
behaviors. On the connection level, structural hole theory has
been widely adopted in combination with other social science
theories. For example, social balance theory is the theoretical
foundation of the model in [56] and is employed in parallel
with structural hole theory in [58], [59]. Weak tie theory is
also adopted synchronously in [50], [58], [59]. Functioning
as a supporting social science theory, structural hole theory
can also cut down on the number of parameters and sim-
plify the learning process, improving learning efficiency and
effectiveness. We believe that this will continue to dominate
the application of the theory in the machine learning field
and expect to see it applied in more scenarios. To name a
few possible directions, bridging roles that connect different
regions of a city can help analyze mobility networks; the role
SH spanners play in the information diffusion can help with
information recommendation; the special social position of SH
spanners can also contribute to recommender systems. There
is much more to be explored.

Besides, we anticipate more works incorporating structural
hole theory into graph-level tasks, such as graph classification,
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graph isomorphism and graph partitioning, as structural holes
can imply a lot about the overall structure of the whole graph
as well as the subgraphs.

Moreover, graph neural networks [63] have been developing
rapidly in recent years. The intuition behind it is that nodes
aggregate information from their neighbors. We believe that,
owing to the special role SH spanners play in the information
diffusion process, it will be valuable to consider and integrate
structural hole theory in the propagating process of graph
neural networks.

VI. CONCLUSION

This paper reviews the use of the structural hole theory in
social networks from different perspectives: foundations of the
theory, structural hole spanner detection, and applications of
the theory. Structural holes refer to the critical bridges between
communities or groups. Individuals occupying these positions
are believed to possess network advantages. Hence, a number
of metrics and algorithms have been carefully designed to
identify these users, i.e, structural hole spanners. Structural
hole theory has been widely applied in social network analysis,
resulting in applications in a wide range of practical scenarios
as well as machine learning-based social prediction. We be-
lieve that a deeper exploration of structural holes will further
produce a number of interesting and valuable questions and
findings in the field of social network analysis. In particular,
we expect more work related to dynamic network evolvement
in the near future.
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