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Abstract—We present IOTURVA, a platform dedicated to se-
curing Device-to-Device (D2D) communication in IoT networks.
IOTURVA targets an alarming and yet unexplored region in
IoT security, where the interactions and dependencies across
heterogeneous IoT devices are extremely hard to secure and
regulate. Different from existing proposals that mostly tackle
conventional device-to-infrastructure communication for IoT, our
solution embeds the security functions within the connectivity
for IoT devices and can provide selective network isolation
at device-level granularity. To demonstrate IOTURVA, we have
implemented a prototype and evaluated it through several live
scenarios in the testbed. Our results show that IOTURVA is
responsive and can effectively control cross-device dependencies
and D2D interactions in IoT networks.

I. INTRODUCTION

The proliferation of Internet-of-Things (IoT) is quickly
turning the hype into an imminent reality. Recent forecasts
expect more than 20 billion devices connected to the Internet
by the end of this decade [1]. Residential and corporate net-
works provide connectivity to billions of IP-enabled devices.
IoT brings automation to industrial and smarthome lighting,
security etc. with a promise to improve life style of users.

This huge potential of IoT devices comes at a cost of user
security and privacy. Most of IoT devices are developed by fast
moving teams in large enterprises or independent startups. The
manufacturers have constrained resources and tight deadlines
for developing products and launching them in the market.
Tight deadlines and limited resources force these manufac-
turers to do corner cutting such as using unverified code
snippets and not following security by design principles [2].
Manufacturers tend to embrace insecure design practices e.g.,
allowing weak passwords for customer’s ease of use.

Consumers and manufacturers do not pay attention to
security and privacy attacks (using IoT devices) reported
frequently, as we see similar kind of issues (re)appearing over
time. Although IoT devices installed in edge networks are
not easily accessible via Internet due to NAT-ing, it does not
make these devices itself secure. Attackers have been able to
hack IoT devices installed deep in edge networks [3], [4] for
DDoS, spam, malware attacks, which made IoT networks a
challenging environment in terms of security and privacy.

Traditionally, security is either provided by network in-
trusion detection systems (NIDS) e.g., firewalls, intrusion
detection/prevention systems, installed on gateways or vantage
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points in the network or end host based security applications
e.g., anti-virus or anti-malware. Additionally, software vendors
provide updates and security patches to mitigate any security
vulnerabilities discovered in their products. However, all these
solutions fall short to address most of the security and privacy
concerns [5], [6], related to IoT devices, for a number of
reasons.

Complex Device-to-Device (D2D) interactions: Typical
IoT installations consist of a number of devices specialized
for monitoring environment or performing dedicated task (e.g.,
temperature sensors, smart bulb). IoT ecosystem allows these
devices to intercommunicate and follow IF-This-Then-That
(IFTTT) model [7] to perform various functions. For instance,
if temperature is < 90°C, switch on heating. This interde-
pendency between IoT device can be exploited by attackers
to gain access over the whole ecosystem. For example, an
attacker can generate a fake signal from CCTV camera to open
the garage door giving him access to user home. Many IoT
devices (e.g., smart locks, CCTV cameras, perimeter security
sensors) are installed outside home, exposing them to illegal
tampering. Therefore, it is very important to curtail these D2D
interactions and dependencies in IoT ecosystem to reduce the
possibilities for an attacker to trick the system into helping
adversaries.

NIDS use a number of security policies or firewall rules to
match state of any traffic flow in/out of the network [8]. Using
Match — Action technique, they allow/block given
traffic flow. However, direct D2D and out-of-band interactions
(using state changes) are difficult to capture by traditional rule
based security models. Hence, we require a solution which is
able to take context and D2D dependencies into account for
securing network communications.

In addition, NIDS follow reactive security model where
a threat needs to be first detected and then blocked. Threat
detection requires substantial manual efforts (analyzing logs,
setting up alarms for attack detection) and also requires manual
update of security configurations to block the threats. A
number of smart home solutions use D2D dependencies to
offer interactive features for users such that switching on
lights when main door is unlocked. Such solutions make it
complex to document and differentiate between normal D2D
interactions and anomalous actions.

Heterogeneity of ecosystem: IoT ecosystems can consist of



thousands of devices from hundreds of manufacturers. These
devices run a very stripped down version of operating system
(OS) or none at all. The diversity of firmware models, software
application stack, lack of power and hardware resources,
lack of software updates and security patches etc. make it
nearly impossible to develop end-host based software security
applications for IoT devices. Longevity of IoT installations
also makes it impractical to leave unpatched, vulnerable IoT
devices in the wild.

Lack of growth truth: NIDS and anti-viruses use huge
databases of malware and attack signatures to identify anoma-
lous behaviour from network traffic traces and device ac-
tivities. The diversity of firmwares, application stacks and
protocols used by IoT devices makes it challenging to de-
velop such signature databases for IoT usecases. Traditional
approaches for learning attack signatures e.g., honeypots also
do not scale for IoT scenarios [5]. The information about
D2D dependencies is vital for developing a practical, scalable
security solution for IoT ecosystem. It is difficult to develop
static configuration models (policies) for IoT networks given
the complexity of D2D interactions and sheer number of
devices. These configurations also need to be constantly and
repeatedly updated as new devices join/leave the network.

Dynamic and automated enforcement mechanism: Typi-
cal residential and corporate networks provide connectivity to
user’s smart devices including smartphones, tablets, computers
and IoT devices. Traditionally, network managers are respon-
sible for setting up traffic filtering rules required to secure
incoming/outgoing traffic. This approach does not scale with
the huge number of networks as well as the heterogeneity
of devices connected to these networks. In order to ensure
consistent security for all connected devices all the time,
networks should be able to identify connected devices. Using
device-related information, gateways and access points (APs)
should be able to automatically retrieve and enforce required
set of traffic filtering rules to secure all connected devices e.g.
if user connects smart TV to home network, gateway should
be able to detect it and reconfigure network to ensure that
smart TV is not able to send video and audio stream from
microphone and webcam to an arbitrary server at any time.

Our work tackles these challenges and the contributions are:

o We present IOTURVA, a security platform that combines
contextual information with network data to enable au-
tomatic classification of network flows in network edge
and provide security as integrated part of connectivity for
all user devices.

« We implemented a prototype of IOTURVA to demonstrate
its efficacy, performance for resolving security challenges
in edge networks.

o We analyze the challenges and identify the avenues of
growth in developing lightweight context aware security
enforcement mechanism for IoT ecosystem.

II. SYSTEM OVERVIEW

Figure 1 shows the system design of IOTURVA, primar-
ily consisting of Turva Gateway and Turva Service. Turva
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Fig. 1. System design for IOTURVA.

Gateway is responsible for supervising all communications
among IoT and other devices residing in edge network.
Turva Gateway uses Software-defined Networking (SDN) to
manage network communications and enforce traffic filtering
and security policies in the network. The system supports plug
and play architecture for security services, which are used to
identify network attacks and anomalous device behavior by
analyzing user traffic. Turva Service can either be centralized
or it can be deployed as a set of disjoint interconnected
installations, where each installation is responsible for one
or more network functions such as traffic filtering, malware
analaysis etc., provided by Turva Service.

A. Turva Gateway

We deploy Turva Gateway at the network edge for providing
connectivity to all user devices including IoT devices. It is
responsible for monitoring all traffic within and across the
network to identify and block anomalous network interactions.
It is a lightweight gateway which can be deployed using
minimum hardware resources e.g., Raspberry PI or legacy
APs, as it offloads resource intensive tasks e.g., classification
model training, state management, context management etc. to
the Turva Service.

Turva Gateway can oversee every network interaction, may
it be network-local (both devices connected to same user
network/AP) or remote (user device connecting to remote
destination over the Internet or vice versa), and generate a
signature from it. It combines context information (retrieved
from user devices and Turva Service) with this signature. The
final signature is then classified using a classification model
as either normal or abnormal interaction. Based on the result,
Turva Gateway generates a rule and installs it in the network
to allow or prohibit similar network interactions. This practice
allows us to provide proactive security for protecting user
networks and device compared with reactive security provided
by traditional network perimeter security systems.



Turva Gateway also acts as a sensor for aggregating traffic
signatures (i.e. network data) from user networks and passing
it to Turva Service where it is used to train and improve those
classification models.

B. Turva Service

Turva Service is logically a centralized platform for sup-
porting Turva Gateway in managing the device and network
security. Turva Service platform allows to deploy software-
defined middleboxes (SAMs) as well as micro security services
uSS to perform analysis on user’s network data [9]. It collects
and maintains auxiliary information about the context of users
and their IoT devices. This context information includes user
location, device location, activity hours, normal usage patterns,
device network activity etc.

Turva Service develops a global view across a number of
networks using all collected information. This information
combined with data from 3rd party sources results in gen-
erating improved traffic classification and network anomaly
detection models with high generalization. These models are
able to classify D2D interactions with higher accuracy.

IOTURVA architecture is flexible to support different de-
ployment models including centralized, distributed and hybrid
model. We envision incremental deployment model to follow a
brownfield approach where legacy setups can be used to setup
our system. Therefore, we require minimal hardware resources
for Turva Gateway, so that it can be deployed using typical
APs available in traditional network or a small form factor PC
e.g., Raspberry PI !, Omega Onion 2. Turva Service can also
be deployed on premises by an enterprise otherwise it can be
maintained by a service provider and subscribed by users, who
configure their Turva Gateway to use the service for managing
their networks.

C. Policy Engine

Traffic filtering rules in NIDS lack the expressiveness
to address D2D interactions in IoT ecosystem. NIDS uses
State, Match — Action model for traffic filtering where
State and M atch is retrieved from packet headers, connection
state and Action corresponds to whether given flow will be
processed for delivery or dropped. It assumes that all devices
are independent and each device’s activity only changes its
own state. However, the case is different in IoT scenario e.g.
if CCTV detects a car pulling into the driveway, garage door
will be opened. In order to use NIDS, it is impractical to
specify all possible D2D dependencies to generate these rules.
Due to a large number of IoT devices and diversity of their
mutual interactions, any efforts of manually specifying D2D
dependencies will result in inconsistent specifications that
break down device functionalities and generating loopholes
to be exploited by attackers. It will also expose users to far
more attacks by giving them a false sense of security.

IOTURVA uses security profiles (D)) for each user device.
Dy, is estimated based on the set of known vulnerabilities

Uhttps://www.raspberrypi.org/products/raspberry-pi-2-model-b/
Zhttps://onion.io/

associated to the device and device’s (anomalous) network
activity. Different ways to get this ground truth are mentioned
in Section II-D. In essence, Dy, is a numerical value, referred
to as secure, suspicious and unsafe for the sake of clarity.

When a device is first connected to the network, Turva
Gateway identifies the device [10] and assigns D,,. It is
later updated based on device’s previous and current network
activity e.g., the profile of safe CCTV camera will be updated
to suspicious if it tries to scan the network. IOTURVA registers
all users devices with Turva Service to support mobility,
state and context management. It also allows users to specify
preferences at device and context level granularity e.g., use
parental control on tablet PC whenever it is at home.

The classification engine uses D,,, network metadata and
context information to assign a suspicion index (SI) for every
connection request analyzed by Turva Gateway. Based on SI,
Turva Service either directs Turva Gateway to immediately
deny the traffic flow request, reroute traffic via uSS /SdMs
or allow the traffic flow to be established e.g. if CCTV tries
request to smartlock, requesting to open the garage door when
D, (CCTV) : suspiciouys, time : night, userlocation :
home then SI(request) = suspicious i.e., SI(request) : 0.6
(where SI(i) € [0 — 1]) and request to open garage door will
be blocked to minimize risks of security compromise for the
premises. In case of a highly suspicious activity, IOTURVA can
notify the user via email, sms or phone call. It can generate
monthly, weekly, daily reports depending on network activity,
for the users

The efficiency of this scheme is dependent on the hard-
ware resources available on Turva Gateway. The system also
supports service mobility for the devices across all networks
secured by IOTURVA. In order to deal with brute force
scenario, which results in poor performance as the number
of devices, states and environment variable grow [5], we
decouple training and classification parts. The training is done
utilizing large resources available in Turva Service, to achieve
high generalization. Classification is done in edge networks
to support user privacy and prevent sharing of user’s network
data with external services.

D. Ground truth collection

Ground truth collection is of key importance for for training
classification model and assigning Dy,. We can use malware
signatures and honeypot-like mechanisms for learning attack
signatures related to IoT devices. However, such technique
does not scale to IoT scenarios where there is huge diversity
in device interaction models, composition of ecosystem and
services. Some potential sources for collecting up-to-date
network attack and anomaly signatures for our system are
outlined as follows.

Crowdsourcing: Crowdsourcing will allow users with IoT
deployments to share their normal and anomalous device
activity signatures. Turva Service allows subscribers as well
as non-subscribers to publish their signatures with the system.
The information submitted from subscribers can be used for
providing subscriber-oriented security and mobility services.



Non-subscribers can get incentives for sharing this information
with the system in form of monetary benefits or free access
to signature database maintained by Turva Service.

However, crowdsourcing raises issues about privacy and
quality of collected information. We can use privacy pre-
serving techniques and anonymized submissions to ensure
privacy of users who submitted the information [11], [6]. Data
quality can be improved by cross examining the collected
information by experts, using threshold-based acceptance of
submitted signatures. Many other techniques including user
reputation, voting etc. have been proposed in literature, to
improved quality of crowdsourced data [12].

CVE, malware databases: Public CVE [13] and malware
databases [14] publish information about vulnerabilities de-
tected for IoT devices. We can also create attack signatures
against common exploits, as reported in CWE [15], in software
stack used by IoT devices. This information can be used by
IOTURVA to develop up-to-date ground truth for its classifica-
tion models and configurations updates of uSS .

Device manuals and cloud services: Many IoT vendors
provide information about device functionality and supported
interactions with other IoT devices, in companion manuals.
They also list of cloud services and devices from other vendors
compatible with their devices along with how to enable cross
device interactions in user setup. This information can be
useful in covering cross device dependencies in IOTURVA.

Testbeds: The testbeds developed by researchers working
with IoT security and communications can provide in-depth
data about device vulnerability and cross-device dependencies.
These testbeds can also be used to individually monitor device
behaviors and mode of interactions in several states. IOTURVA
uses such data to model device behaviors and identify (signa-
tures) abnormal device interactions. A combination of these
models can also be used to capture multi-level attacks using
cross-device interactions.

Our proposed Turva Gateway can be regarded as a sensor
in IoT networks. It can monitor network traffic and provide
aggregated information to Turva Service. This information
can be used to deduce device usage patterns, baseline device
activity and device interaction profiles, which are then used to
train classification models for detecting anomalous activities
in the network.

III. IMPLEMENTATION AND EVALUATION

Our prototype implementation uses a Raspberry PI II model
B [16] for deploying Turva Gateway. We have written an
additional module in Floodlight controller v1.2 [17] to
intercept every new connection attempt, classify it as a normal
or abnormal, generate and deploy OF rules to enforce network
policies to allow or block the connection request. User’s
location, network activity and other context information are
obtained through a smartphone application. The interfaces
offered by IoT devices can also be used to get context
information e.g., CCTV camera interfaces can be accessed to
verify whether there is a person/object in the field of view or
not.

Wireless 1oT devices Turva Service
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Internet
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Fig. 2. Evaluation testbed layout.

We use Kubernetes [18] cluster setup in our lab to
deploy Turva Service, as it provides builtin load balancing, ser-
vice discovery etc. We deploy puSS using lightweight Docker
containers [19]. Currently, we use Linux VMs for hosting uSS
but lightweight C1ick 0OS [20] or other Unikernel OS [21]
can be used to host these services.

We use D,, to setup

adhoc network overlays J—
in edge networks, see “All devices
Fig 3, to group together / | MNomes
devices  with  similar | \
Dy, ie. for safe overlay i
contains D, (device) =
safe ¥V devices. These \ contrpers
overlays allow us to specify \‘d feees
different level of network ~_
access  for  individual
devices by restricting the
set of destinations any
device can communicate
with. IOTURVA supports selective network isolation at device
level granularity e.g. user’s own smartphone can control
smarthome lighting system, however, any guest’s smartphone
can not connect to any IoT devices in user smarthome.
Fig 3 shows completely isolated (compromised) devices, who
cannot talk to any other device in the network.

Fig. 3. Overlay networks developed for
limiting cross-device interactions.

As shown in Fig. III, we used > 10 devices in various
testing scenarios to simulate a typical smart home IoT ecosys-
tem where all devices are connected to same network and can
communicate with each other openly. During evaluation, each
of the simulations was performed for 300 seconds and results
presented here are aggregated over 30 simulation runs.

Table 1 shows that we can achieve similar latency with
IOTURVA as experienced in traditional network setups. Table II
shows that throughput achieved by IOTURVA is also compa-
rable to that of traditional networks (where S1 : localserver,
S2 : dperf.funet.fi, S3 : iperf.scottlinux.com, S4
bouygues.testdebit.in fo). Figure 4 shows that IOTURVA
does not significantly affect user experience in terms of latency
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Fig. 4. IOTURVA performance in a typical smart home IoT ecosystem. (a) Latency experienced for D2D communication via Turva Gateway. (b) Increase
in latency due to simultaneous D2D interactions in the network. (c) CPU and memory utilization for Turva Gateway functioning.

TABLE I
LATENCY (MS) EXPERIENCED FOR CROSS-DEVICE COMMUNICATIONS.

Latency DS D6 D7 D8

D1 253 (£2.1) 183 (£1.1) 282 (%3.3) 149 (£0.6)

D2 27.5 (£1.9) 172 (£1.3) 22.1 (£3.1) 13.7 (£0.8)

D3 273 (£2.5) 155(£1.4) 259 (£3.4) 14.1 (£0.8)

D4 26.6 (£2.1) 168 (£1.6) 21.4 (£5.7) 13.6 (£0.9)
TABLE II

THROUGHPUT (MBPS) ACHIEVED BY USING IOTURVA.

Server D1 D2 D3 D4

S1 32.1 (£0.2) 334 (4£0.1) 36 (+0.1) 48.9 (+0.0)
S2 144 (£1.2) 144 (£0.9) 153 (£1.3) 322 (£0.1)
S3 7.6 (£9.8) 7.9 (£12.1) 7.5 (£11.1) 14 (£6.3)
S4 147 (£7.7) 158 (£4.5) 13.6 (£6.2)  30.9 (£2.1)

and overhead.

Figure 4a shows the latency experienced for D2D commu-
nications within IOTURVA testbed network. Figure 4b shows
that latency experienced in D2D communications is not signif-
icantly affected as the number of background traffic increases
with simultaneous D2D interactions where each interaction
corresponds to one traffic flow. Figure 4c show that memory
and CPU utilization increases sub linearly with an increase in
number of simultaneous flows in the network. Figure 4 shows
that low memory and CPU footprint of Turva Gateway makes
it easy to deploy using lightweight hardware to improve cost
efficiency.

Figure 5a shows a direct D2D scenario where an attacker
compromises an IP-connected CCTV camera and tricks smart
lock to open garage door and get access to user’s home. In
normal setup, when CCTV sees a car pulling up in drive way,
it will request smart lock system to open garage door. Attacker
can therefore, use compromised CCTV to request smart lock
to open garage door anytime.

In test setup, we assume CCTV is physically accessi-
ble to anyone, so D,,(CCTV) suspicious, whereas
D, (smartlock) = safe as it can only be configured using
user’s smartphone. In attack scenario, when adversary makes a
request to smartlock setup (using CCTV) to open garage door
at night, Turva Gateway classifies it, using contextual informa-

tion about user location (obtained from Turva Service), local
time and connection information, as suspicious S = .78 and
the connection is blocked.

Our current system uses a fuzzy inference logic® for classi-
fication purposes. The model is trained using Fuzzy C-Mean
clustering technique to cluster 1000 training samples from
each class into 20 clusters. The set of features (antecedent
variables) include D,,, connection parameters, local time, user
location, device location and consequent variable gives S1.

We used 11 devices with 10 interactions between each pair
of devices to get a total of 10 x 10 x 10 test scenarios.
We have been able to achieve > 93% success in accurately
classifying direct D2D interactions as normal or abnormal.
However, we argue that the number of parameters (considered
in our test setup) can be further increased for accurately
predicting ST and minimizing false positive predictions. Our
high success rate is also owed to availability of complete
ground truth for testbed setup, which is not the case for real
world setups. Therefore, we suggest using machine learning
based algorithms to train traffic classification models using
a large number of connection and contextual parameters for
covering a wide range of device interaction scenarios.

Figure 5 shows one of the test scenarios for multi-level D2D
interaction. In normal setup, when car pulls into drive way,
CCTV (D4, (CCTV) = suspicious) requests lighting system
(Dsp(lightSrv) safe) to switch on lights and lighting
system requests smart lock (D, (smartlock) = safe) service
to open the main door. An adversary (as CCTV) can request
lighting system to switch on lights and Turva Gateway with
allow this connection. However, when lighting system requests
smart lock to open main door, Turva Gateway will take context
of previous (CCTV to lighting system) and current request
combined with other information into account and block the
request to open main entrance door.

We divided test devices into three classes for evaluating
multi-level cross-device dependencies, where Dy, (classA) =
suspicious, Dsp(classB) = safe and D, (classC) = safe.
Each D; € ClassA (e.g. CCTV) requests D; € ClassC (e.g.
lighting system) to perform an action, which will lead to Dy, €

3Details omitted due to page limit
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TABLE III
CONFIDENCE MATRIX FOR SUCCESSFULLY IDENTIFYING MULTI-LEVEL
D2D INTERACTIONS.

Class B
D6 D7 D8 D9 D10
< D1 1 1 0.9 1 1 p11 ©
2 D2 1 08 07 05 04 DI2 &
O D3 1 0.8 1 1 09 DI3 O
D4 1 1 1 09 09 D14
D5 1 1 1 09 1 D15

ClassB (e.g. smart lock) to execute desired action (e.g. open
main door). For each tuple (D;, D;, D) e.g., (D1, D11, Dg),
10 interactions were considered for classifications. Table III
shows the number of interactions accurately classified by our
system. Once again, availability of complete ground truth
allowed us to achieve 90.8% accuracy in classifying nor-
mal/abnormal interactions in multistage D2D dependencies.
However, this time more cases are misclassified(compared to
direct D2D interactions) because of less feature available for
classification.

IV. CONCLUSION

The emerging number of security and privacy incidents on
IoT are becoming taxing to our everyday life. Our networks
are littered with these vulnerable devices putting user privacy
and data security at stake. Our analysis reveals that traditional
security mechanisms fail to address the concerns related to
IoT devices. There is a dire need to develop IoT focused
network security solutions because IoT devices are the weak
links, which allow adversaries to infiltrate the network and
put the whole network security in jeopardy. Therefore, we
proposed IOTURVA, to enable context aware security in IoT
ecosystem to address D2D dependencies. Our system takes
a incrementally deployable approach to solve major network
challenges related to IoT. Although the system is not a silver
bullet solution to address all security and privacy concerns
related to IoT, we expect this work to serve as stepping
stone towards building solid IoT specific security and privacy
solutions. We have identified the limitations in our work
and proposed possible avenues of improvement for future
research.
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