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Abstract

In recent years, there has been a notable increase in the
size of commonly used image classification models. This
growth has empowered models to recognize thousands of di-
verse object types. However, their computational demands
pose significant challenges, especially when deploying them
on resource-constrained edge devices. In many use cases
where a model is deployed on an edge device, only a small
subset of the classes will ever be observed by a given model
instance. Our proposed test-time specialization of dynamic
neural networks allows these models to become faster at
recognizing the classes that are observed frequently, while
maintaining the ability to recognize all other classes, al-
beit slightly less efficient. We benchmark our approach on
a real-world edge device, obtaining significant speedups
compared to the baseline model without test-time adapta-
tion.

1. Introduction

For many years, the ImageNet1K dataset [36] was consid-
ered to be the go-to large-scale image recognition dataset.
With 1,000 object classes and over a million training
images, it was a challenging problem, both in terms of task
performance and training cost. However with advances
in hardware [16], distributed approaches for training
[42] and semi-automatic data labeling [49], it became
feasible to collect and train on much larger datasets such
as the ImageNet22K dataset (22K classes, 14M images),
Tencent ML-images (11K classes, 18M images) [45] and
even larger, proprietary datasets such as JFT-300M (18K
classes, 300M images) [38] or JFT-3B (30k classes, 3B
images)[49]. To capture the information contained in these
datasets, increasingly large models are being developed.
Where a commonly used ResNet50 model had 25M param-
eters [13], we are now seeing computer vision models with
2B [4], 3B [28], or even up to 22B parameters [6]. There
is increasing evidence that very large, overparameterized
models are needed to generalize when training on these
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Figure 1. We propose to first train a model on a large and diverse
dataset. This model is then deployed on edge devices where it
is immediately able to make useful predictions. Over time, the
model is updated in a self-supervised way (test-time adaptation)
to become more specialized and efficient at processing the data
that is commonly observed in this environment.

extremely large datasets [2], making it likely that even
larger models will be developed in the near future. Because
of the use of proprietary datasets and the vast computational
resources required, only a few organizations are able to
train models of this scale. Fortunately, trained models are
often made public and developers are increasingly using
them to power their applications. However, the data these
models encounter after deployment tends to be less varied
than the data used for training. The ImageNet1K dataset for
example, contains examples of “Gazelle”, “Ambulance”,
“Yurt”, “Pirate ship” and 996 other wildly different classes.
It is unlikely that an application deployed on an edge device
will ever see examples of all of these in the real world.
It is more likely that the model will need to differentiate
between similar types of objects such as different types of
fruits or vehicles. While it is of course possible to only
train the model on the subset of interest, this would require
a careful selection process and potentially limit the model’s
adaptability to unforeseen scenarios. We instead propose to



train a model on data from all classes and to use test time
adaptation (TTA) to specialize for the subset of interest.
Ideally, we can then train a very large model once, on a
huge (proprietary) dataset with a very large number of
classes and optimize it after deployment for each different
environment. Figure 1 illustrates this idea, here a model is
trained on a large dataset such as ImageNetl1K. It is then
deployed in two environments where it will either observe
mostly fruits or vehicles. Through test-time adaptation,
the first model instance will become more efficient at
recognizing different fruits while the second instance will
be optimized to recognize vehicles. Both models will
remain capable of recognizing all 1,000 ImageNetlK
classes although images of classes that are observed rarely,
will require more processing time.

The remainder of this paper is organized as follows.
In Section 2 we first give an overview of related work
in the fields of adaptive neural networks and test time
adaptation. We then introduce our approach in Section 3
and experimentally validate it in Section 4. We conclude in
Section 5 and give a few pointers for future research.

2. Related work

We propose Adaptive Neural Networks that use Test Time
Adaptation to obtain efficient location specific models. In
this section, we briefly review the literature of these three
topics.

2.1. Adaptive neural networks

A ResNet50 model obtains an ImageNet top-1 classification
accuracy of around 76% and has 25M parameters [13].
Its larger sibling, ResNet152, obtains an accuracy of 78%
but has almost three times as many trainable parameters.
A similar observation can be made for most families of
neural network architectures: while the additional capacity
of larger models results in a higher overall performance,
this only makes a difference for a small subset of the
test samples. The computational cost of processing these
samples will be much higher for the larger model, even for
the samples that could be classified correctly by the smaller
model.  Adaptive Neural Networks (sometimes called
Dynamic Neural Networks) try to address this issue by
dynamically adjusting their computational costs based on
input complexity [12]. All these models incorporate some
sort of conditional computation component that selectively
activates parts of the model. We briefly describe some of
the most relevant approaches in the following paragraphs
and refer to [12] for a more in-depth overview.

A popular approach is to incorporate early exits into
a neural network architecture that allow for premature
predictions. Traditionally, deep neural networks process

the input through all layers before producing a final output.
However, with early exits, intermediate predictions or
decisions can be made at earlier layers, based on the infor-
mation available at that point. If the model is sufficiently
confident in an early prediction, the remaining layers are
not evaluated anymore, reducing the computational cost.
Early exits in deep neural networks trained for image
classification were first proposed in [18] and later revisited
by [1, 20, 39]. Early exits are now also being used in
object detection [47], generative models [17], anomaly
detection [41] and intrusion detection [31]. Our work
relies on these early exits but combines them with test-
time adaptation to improve the model’s efficiency over time.

An alternative approach is to use multi-branch archi-
tectures where multiple parallel network branches can
be selectively executed based on the current input. Each
branch learns to specialize, resulting in a Mixture-of-
Experts (MoE) model [3, 33, 35]. At runtime, only a subset
of the branches are used, depending on the current input
sample, resulting in a lower computational cost.

Other techniques to selectively disable parts of the
model at runtime are based on pruning, a common strategy
to reduce the computational cost and memory footprint
of deep neural networks by pruning weights that have
minimal impact on the network’s overall performance [25].
By identifying and removing these insignificant weights,
which contribute less to the network’s output, the model can
be made more efficient without compromising its accuracy.
Pruning techniques typically involve setting small-weight
connections to zero or removing them entirely, resulting in
a sparser network architecture that requires fewer compu-
tations and storage resources. Dynamic pruning techniques
apply this at inference time to deactivate neurons or
convolutional filters of the next layer, typically based on
statistics of previous layers [8, 15, 19, 23, 26].

An interesting research direction is to design models
that learn how to dynamically allocate their resources by
balancing two loss functions during training where one is
the typical classification or regression loss and the other
is a regularization term that encourages the model to use
fewer resources if possible. Models can for example learn
what part of the input image it should focus on, using fewer
computations for background parts [7] or can dynamically
adjust the number of visual tokens in a Visual Transformer
model [44, 48]. Other techniques learn to iteratively refine
the features extracted by previous layers and decide at
runtime how much refinement is needed to process the
current input [21].



2.2. Location specific models

Through the utilization of extensive and diverse datasets,
along with techniques such as data augmentation and regu-
larization, developers strive to train models that can effec-
tively generalize to novel scenarios. Depending on the spe-
cific application, the model can be deployed in a central-
ized, cloud-based system, or alternatively, a decentralized
approach can be chosen, where the model is evaluated on
edge devices situated near the data-generating sensor. The
deployment of models at the edge offers various advantages,
including enhanced privacy, bandwidth efficiency, and scal-
ability. This paper presents the argument that in many in-
stances where models are deployed on edge devices, their
ability to generalize to different environments becomes less
crucial. Given that the model will solely encounter inputs
from a specific environment throughout its lifespan, a cer-
tain degree of overfitting to that environment is tolerable or
even beneficial. Based on this notion, it is reasonable to an-
ticipate comparable accuracy by employing smaller mod-
els that are specifically tailored to the given environment,
even if they do not exhibit strong generalization to other en-
vironments. While only a few studies have explored this
location-specific aspect of edge computing [5, 22, 30, 34],
they have adopted a similar methodology. These works em-
ploy a large teacher model trained on diverse datasets to
generate a training signal for a smaller student model spe-
cialized for a particular environment. In this research, we
propose a similar approach but instead of using separate
teacher and student models, we use self-supervision from
a deep exit to an early exit of an adaptive neural network.

2.3. Test time adaptation

In conventional machine learning applications, the training
and test phases are typically treated as separate entities.
Once the model is trained, it is expected to generalize well
to unseen test data and its weights remain fixed. However,
an intriguing avenue of research explores the possibility of
updating models during the test phase as well. Test time
adaptation (TTA) can for example be used to handle do-
main shifts such as changes in weather conditions or sensor
degradation [40]. Since labeled information is usually
unavailable during testing, these approaches rely on self-
supervised or unsupervised learning techniques. Broadly
speaking, two categories can be distinguished: backward-
based and backward-free methods [43]. Backward-based
methods employ gradient-based optimization to adjust the
model parameters, optimizing a loss function like entropy
[40] or using pseudo-labeling [24]. However, these ap-
proaches have drawbacks, including higher computational
costs and the risk of catastrophic forgetting where model
performance deteriorates due to noisy gradient updates
[43]. On the other hand, backward-free methods aim to
align the features extracted during testing with the training
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Figure 2. Our architecture is based on the Reversible Column Net-
works (RevCol) consisting of n columns that each produce a hi-
erarchical series of feature representations. We add a classifica-
tion head to each column that acts as an early exit. We use self-
supervision from a latter head to an early head at inference-time to
improve the performance of the earlier heads.

distribution by adjusting parameters such as Batchnorm
layers [32, 37].

Our work can be classified as a backward-based ap-
proach. However to alleviate the aforementioned issues,
we only update a small portion of the model, limiting
the computational overhead and ensuring the model does
not suffer from catastrophic forgetting. Unlike existing
research on test time adaptation, our objective is not to
compensate for domain shift, but rather to improve the
efficiency of location-specific models.

3. Approach

In this section, we first explain the structure of the RevCol
model that forms the backbone of our proposed architec-
ture. We then explain how we transformed this architecture
into an adaptive neural network and finally, introduce the
test-time adaptation procedure. A detailed depiction of the
architecture can be seen in Figure 2.

3.1. Backbone

Our model is based on the Reversible Column Network
(RevCol) architecture [4]. This recently proposed architec-
ture has demonstrated outstanding performance on various
tasks, including image classification, object detection,
and semantic segmentation. It strikes a balance between
computational efficiency and memory requirements, sim-
ilar to other high-performing models like Swin [27] and
ConvNeXt [29]. The RevCol architecture is particularly
intriguing due to its composition of N subnetworks known
as columns, each possessing an identical structure. In this
design, every column receives a copy of the input and
produces a hierarchical series of feature representations.



While a conventional convolutional neural network (CNN)
can be viewed as a RevCol with only one column, the
RevCol architecture allows for the propagation of features
from column i to column i+1. This enables subsequent
columns to enhance the quality of features extracted
by their preceding counterparts, similar to the iterative
refinement process observed in ResNets [10].

To facilitate efficient training, the propagation of fea-
tures between consecutive blocks utilizes reversible
transformations [9]. This approach significantly reduces
memory consumption by eliminating the need to store
intermediate activations for gradient calculations during
backpropagation. Instead, the intermediate activations can
be reconstructed on-the-fly as required.

3.2. Early exits

In the original RevCol specification, the features extracted
by the last column are used as input to a task specific
head such as a linear layer for classifcation, a Cascade
Mask R-CNN head for object detection [14] or a UPerNet
head for semantic segmentation [46]. Our goal however
is to design an adaptive neural network with early exits
where hard input samples require more processing than
easier to understand samples. This matches well with
the multi-column RevCol architecture where subsequent
columns learn to extract better features but where the
features extracted by early columns might already be good
enough to make an accurate prediction for some samples.

Instead of a single head attached to the last column,
we propose to attach heads to all of the earlier columns
as well. These follow the same structure as the final head
and are also trained in the same way (i.e. by minimizing
the cross entropy loss using gradient descent). As the
model processes an input sample at inference time, a
decision must be made regarding the column at which the
processing should terminate. We follow the procedure of
[18] and interpret the output of the softmax activation as a
confidence metric. While it is known that neural networks
with softmax activations are sometimes not well calibrated
[11] (i.e. their confidence does not match their accuracy),
we found that there was a very strong correlation between
model confidence and accuracy. At inference time, we then
simply evaluate each branch of the model, followed by the
corresponding exit, we compare the maximum predicted
score after softmax activation with a predefined threshold.
If the score exceeds the threshold, we return the prediction
of that branch and do not evaluate the subsequent branches.
Since the threshold can be changed dynamically at runtime,
this makes it possible to adapt the inference strategy
based on the specific requirements and constraints of the
deployment environment. For example, we can reduce the

threshold when the battery level of the device reaches a
critical point to prioritize efficiency over accuracy.

3.3. Test-time specialization

The adaptive computation aspect is just the initial com-
ponent of our proposed model architecture. As stated
in the introduction, our objective is to enable on-device
specialization, where the model learns to enhance its
efficiency in processing input samples from the specific
deployment environment. In our framework, this entails
the earlier heads gradually improving the accuracy of their
predictions over time. Since labeled data is unavailable
after deployment, we leverage the prediction of the selected
head as target and employ backpropagation to minimize the
cross entropy loss between this target and the prediction
of the early exit. This updates the earlier heads in order to
achieve similar predictions as the final head in the future.

However, we refrain from updating the backbone in
this process. The backbone is shared among all heads, and
modifying the parameters of early columns would alter
the features provided to subsequent columns, potentially
compromising the performance of subsequent heads.
Moreover, updating the backbone would significantly
increase the computational cost. Given that our objective
is to obtain an efficient model for inference, it is crucial
to minimize the computational expense associated with
self-supervised specialization by only updating a small
portion of the heads.

4. Results

In this section, we demonstrate the performance of our
adaptive neural network with test-time adaptation, applied
to the task of image classification. We use a pretrained
RevCol-T architecture with four columns as the backbone.
This model was trained on the Imagenet dataset and obtains
a classification accuracy of 82.1%. We first explain how
this model is transformed into an adaptive architecture with
early exits in Section 4.1 and then show how test-time adap-
tation allows the model to specialize at runtime in Section
4.2. All latencies reported were measured on an NVIDIA
Jetson AGX Orin development board using a batch size of
1.

4.1. Early exits

We trained three additional classification heads for the first
three columns. These heads were trained using all available
Imagenet training data (i.e. all 1,000 classes). The top part
of Table 1 shows that these early exits obtain an accuracy of
61.8%, 72.9% and 78.7% respectively, lower than the base-
line full model that obtains an accuracy of 82.1% but also
each with a significantly lower computational cost than the
full model. The latencies reported for these fixed exits also



Table 1. Inference latency measured on the NVIDIA Jetson Orin
board and corresponding Imagenet validation accuracy (top 1).

Model Latency (ms) Accuracy
Fixed exit 0 154 +£1.1 61.8 %
1 30.3+0.6 72.9 %
2 44.6 £0.8 78.7 %
3 55.3+ 1.0 82.1 %
Threshold 0.5  22.7+15.3 72.8 %
06 251+£16.1 75.4 %
0.7 279£16.9 77.7 %
0.8 30.7£16.7 79.4 %
09 348=£14.2 80.9 %
Baseline 53.1£0.6 82.1 %

include the overhead of evaluating all previous intermediate
heads. By comparing the inference latency of exit 3 with
that of the baseline model, we conclude that this overhead
is limited to two milliseconds in the worst case, negli-
gible compared to the total computational cost of the model.

Once these early exits have been trained, we can use
them to implement an adaptive inference procedure. The
second part of Table 1 shows the obtained accuracies and
corresponding runtime latencies for different threshold
values. In this experiment, we used uniform thresholds for
all branches but these can be further tuned to obtain an
even better accuracy-latency trade-off. We can see that a
threshold of 0.9 results in an accuracy of 80.9%, very close
to the baseline accuracy of 82.1% while having a 30%
lower inference latency.

In Figure 3, we present qualitative results that show-
case examples of ImageNet validation images with varying
inference latencies. The images near the left demonstrate
instances where the model achieved low inference laten-
cies, while those on the right exhibit higher latencies.
We observe that images featuring a singular, prominently
centered object tend to be easier for the model to recognize,
whereas images depicting zoomed-in objects or lacking
a distinct foreground object pose greater recognition
challenges.

4.2. Test-time specialization

In the previous section, we trained our model on data from
all 1,000 classes of the ImageNet dataset. In this paper,
we argue that it is unlikely that the model will observe
instances of all classes in real-world deployment scenarios.
We would therefore prefer that the model is more efficient
at recognizing those classes that are observed frequently
in a specific location while maintaining the capability to

recognize all other classes, albeit slightly less efficient. We
also assume that we do not know beforehand which classes
the model will eventually observe.

To simulate this, we created six distinct subsets of
Imagenet classes, each containing similar types of objects:
fruits/vegetables, dogs, insects, snakes, sharks and vehi-
cles. The number of classes in these subsets range from
three (sharks) to 118 (Dogs). In Figure 4, we depict the
trade-off between inference latency, as measured on the
NVIDIA Jetson board, and classification accuracy. The
solid lines represent this trade-off for the model before
test-time adaptation with the green solid line denoting
classes belonging to the selected subset and the red solid
line representing all other classes. The thresholds ranged
from 0.5 to 0.9 to generate these curves. A curve closer to
the upper left corner signifies a more favorable trade-off
between inference latency and accuracy.

We leveraged the ImageNet test set to perform the
test-time adaptation.  Utilizing the pretrained baseline
model, we extracted those images belonging to the selected
subset and passed them through the adaptive model,
following the procedure from Section 3 to update the
model. We used the output of the selected branch as target
to update the earlier, not selected branches. Note that no
labeled data is needed for test-time adaptation. We only
update the classification heads of the branches and leave all
parameters of the convolutional layers fixed. We employed
stochastic gradient descent with a learning rate of 10~* and
batch size 1. After processing 100 samples per class, we
evaluate our model on the ImageNet validation set which
contains 50 samples per class. It is worth mentioning
that the names “test set” and “validation set” might be
misleading in this setup. As is customary in the literature,
we report the performance on the ImageNet validation set,
which contains ground truth labels needed for evaluation.
The ImageNet fest set lacks publicly available labels and
is typically not used. However, in our experiment, we
employed it for test-time adaptation. Importantly, all
reported accuracies are measured on a completely held-out
set, unused for training and test-time adaptation.

The dotted lines in Figure 4 illustrate the results after
test-time adaptation. By comparing the green solid line and
the green dotted line, it’s evident that the model becomes
significantly more efficient at recognizing the objects from
the selected subset. For instance, within the “snakes”
subset, the base model can achieve an accuracy of 74%
on this subset. This requires a high threshold, resulting
in an average inference latency of 38ms. However, after
test-time adaptation, we can reach the same accuracy with a
considerable lower average latency of 27ms. Alternatively,



Figure 3. Examples of Imagenet validation images with a low computational cost (left) and a high computational cost (right).

given a maximum latency of 27 ms, we can now obtain an
accuracy of 74% on this subset, compared to 69%. The
red lines depict similar measurements but for all classes
not belonging to the selected subset. Here, we observe
a slight reduction in efficiency, necessitating a higher
latency to maintain the same accuracy. Nevertheless, the
decrease is marginal, and crucially, the model retains the
ability to achieve the same maximum accuracy. The same
observation can be made for all subsets. After test-time
adaptation, the model is able to recognize images from the
selected subset more efficiently while the efficiency of all
other classes degrades slightly. For the Dogs subset (118
classes), this degradation is much more severe than for a
smaller subset such as Sharks (3 classes).

Given that we propose to update the model at infer-
ence time, there is an associated increase in computational
cost during deployment. However, it’s important to note
that we only update a minimal portion of the model, i.e.
only the classification heads of the first branches. In
the worst-case scenario, where no early branch returns a
prediction, calculating the loss and executing the gradient
update takes approximately 1 ms, as measured on the
NVIDIA Jetson board. We contend that this is negligible
relative to the total inference latency of the model and the
speedup achievable through test-time adaptation.

5. Conclusion and future work

In this paper, we introduced a novel approach to specialize
a model to become more efficient at recognizing frequently
observed objects. Leveraging Reversible Column Networks
(RevCol), we developed an adaptive neural network model
capable of delivering predictions sooner when an early
branch is sufficiently confident in its prediction. Through
experimentation on the NVIDIA Jetson Orin development
board, we demonstrated that this early-exit strategy yields
significant real-world speedups.

Furthermore, we illustrated how these early exits can
facilitate test-time adaptation. In cases where initial exits
fail to provide a confident prediction, we employ the
prediction of the selected exit as a target to update the
classification heads of these early branches. Since we
only update a small portion of the model, the update
procedure is swift. Our experimental findings validate that

this approach indeed enhances the runtime efficiency of
the model for the subset of relevant classes during test-time.

We believe that test-time adaptation represents a valu-
able research direction. In future work, we will investigate
the issue of catastrophic forgetting, where the model
gradually loses its ability to classify rare classes after
updates. We anticipate that our approach will exhibit
relative robustness against catastrophic forgetting, given
that the internal layers remain untouched and thus maintain
the capability to extract representative features for all
classes. Additionally, we never update the last exit of the
model, ensuring that it consistently maintains the same
accuracy for all classes as the baseline model.

However, a significant challenge lies in model cali-
bration. Our approach relies on a manually configured
threshold value, which may not align precisely with the
resulting accuracy. For instance, a threshold of 0.8 does
not guarantee an accuracy of 80%. This discrepancy can
complicate the selection of a suitable threshold, particularly
as the model evolves over time and the distribution of
confidences may change. While various model calibration
techniques exist, their application in a dynamic setting with
test-time adaptation remains unclear. Addressing these
challenges will be central to advancing the effectiveness
and applicability of our approach in practical settings.

Finally, our aim is to expand our approach to encompass
other tasks like object detection or semantic segmentation.
Although the RevCol architecture has proven suitable
for such tasks, determining the accuracy of early exits
and updating them efficiently remains an open research
question.
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