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Abstract With rising numbers of people living in cities leading to increasing congestion and pollution, mobile crowdsensing 
applications form a potential solution to make transport systems smarter and more efficient. However, sharing data comes with the 
risk of private information being disclosed. Therefore, a clear incentive is necessary to motivate smart device users to share data 
about their activities and their environment. Taking a choice modelling approach, this study aims to identify factors related to 
incentives and privacy that explain choice behavior of users in crowdsensing applications. We find that the effort required by users 
is a main factor influencing the willingness to share data. 47% of respondents (n=125) indicated to be highly concerned about their 
privacy. However, the risk of re-identification was found to be the least important factor to respondents, a finding which could be 
explained by the Privacy Paradox. Our findings imply that a trade-off has to be made by developers of crowdsensing applications 
between the richness of information on one hand, and the privacy risks and participation rate of users on the other hand. We propose 
three practical principles for designing effective and value-sensitive crowdsensing applications for smart mobility, which are 1) 
Tailor-made applications, 2) Transparency by design, and 3) Ensuring attractiveness of applications. Furthermore, our study 
provides a basis for further research on user preferences in smart mobility applications, which will become increasingly important 
in the light of current challenges in the field of mobility.   
 
Index Terms —  Smart mobility services, Crowdsensing, Choice Modelling, Willingness to share data, Privacy Calculus 
 
Note: Experiment input for this paper is based on research conducted as part of an industry-based project between September 
2021 until January 2022. The “raw material” of the study as MSc thesis can be found on repository.tudelft.nl. 
 
 
 

I. INTRODUCTION1 
y 2050, it is expected that 70% of the world’s 

population will live in cities and surrounding regions 
[1]. The growth we see in cities all around the world has 
direct effects on climate change, rising emission and 
pollution levels, as well as on infrastructure and transport 
requirements [2]. Smart mobility is one of the critical 
features contributing to smart and sustainable development 
[3]. Current challenges relating to congestion, accidents, and 
scarceness of space lead to increased delays, energy 
expenditure, and pollution [4]. This raises the need for better 
planning of traffic and infrastructure. Emerging solutions in 
the field of smart transportation systems, smart charging, and 
Mobility as a Service (MaaS) ask for new ways to acquire 
large amounts of data. These data can be used for analyzing 
and predicting mobility flows and make public and private 
transport more efficient, safe, and sustainable.  

 Crowdsensing is a novel paradigm in the field of 
Internet of Things, enabling both public and professional 
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users to gather, analyze, and share data about the urban 
environment using built-in sensors and applications in smart 
mobile devices [5]. Considering that over 94% of the 
population has access to a mobile network in 138 countries 
[6], there is a huge potential in obtaining real-time data from 
smartphones and other smart devices. Shit [7] argues for the 
relevance of crowdsensing methods for the realization of 
intelligent transport systems. Data collected from 
applications running on travelers’ smart devices can 
contribute to better predictions of traffic flows and of the 
traveler situation, leading to valuable information for 
transport operators, authorities, and travelers.   

 Yet, according to Ribeiro et al. [4] the impact of users 
and their readiness to get involved in these new opportunities 
is a crucial and little addressed element regarding the 
digitization of transport. A key challenge in unlocking the 
potential of crowdsensing applications for smart mobility is 
the identification of robust incentives that enhance 
participation of individuals [8]-[9]. However, sharing data 
can lead to risks related to privacy. Sensing measurements 
might be tagged with location information or may enable the 
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identification of personal routines and habits [10]-[11]. For 
users, a clear benefit should therefore exist in order to 
encourage them to share their personal data about their 
activities and environment. Incentive mechanisms can 
motivate users to participate, but also require a quantification 
of privacy [12]. General studies on the motivations of 
volunteers to engage in crowdsensing tasks and the 
effectiveness of incentives across different contexts are still 
lacking [13]. Furthermore, the specific privacy concerns of 
users, which can be linked to their different characteristics, 
have to be further researched [14].  
 This paper explores what factors related to privacy and 
incentives affect the willingness of smart device users to 
contribute to crowdsensing systems for smart mobility. 
Through the lens of a discrete choice experiment, we aim to 
identify the trade-off that these individuals make between 
potential costs and benefits of participating in sensing 
applications. The primary contribution of this paper is the 
empirical insight it provides into trade-offs concerning data 
sharing in smart mobility services. An additional, secondary 
contribution concerns the method that is applied. Choice 
modelling is a method not often applied to the topic of 
crowdsensing. Thus, this study expands the research field of 
crowdsensing for smart mobility by providing new insights 
on behavior and user preferences regarding crowdsensing 
systems. Moreover, these insights are applied to practical use 
cases in the field of smart mobility. From these scientific 
contributions, a clear relevance follows for policy and 
society, by contributing to the societal debate regarding data 
sharing and privacy. Insights in user perceptions can help 
organizations collecting data to make ethical choices, taking 
into account users and their preferences. This can lead to the 
development of effective smart mobility services while 
protecting values like trust and privacy. 

II. BACKGROUND 

A. Challenges in Smart Mobility 
Three semi-structured interviews were conducted with 
various parties in the field of smart mobility in order to get 
insight in the current challenges relating to digitization in the 
mobility sector. Each one of these interviews leads to one use 
case illustrating a challenge with regard to smart mobility, as 
displayed in Table 1. The main modes of transportation that 
the use cases are focused on are described in the third 
column. 
 
Table 1. Conducted interviews 

Interview Use case 
derived from 
interview 

Mode(s) of 
transportation 

Interview A 
with a 
municipality 

Crowd 
management in 
a city 

Walking, cycling, 
public transport 

Interview B 
with a 
transport 
operator in a 
city 

Real-time 
travel 
information in 
public transport 

Metros, trams 

Interview C 
with a research 
group on 
connected cars 

Traffic 
information for 
car drivers 

Vehicles 

 
The first interview concerns a municipality, aiming for 
digitization of crowd management. Although cameras have 
been used to count the number of people at a specific moment 
in time, there is a wish for additional data to get a more 
detailed view on crowdedness. Real-time data on 
crowdedness could be compared with historical data to 
prepare, monitor, and control traffic flows, for example by 
providing alternative routes to travelers. A use case related 
to the first one is a public transport operator wishing to 
predict crowdedness in vehicles and communicate capacity 
information to travelers. To this end, data from public 
transport cards, weights in vehicles, and infrared sensors 
have been used. However, these solutions do not suffice in 
providing detailed information. With data collected real-
time, capacity requirements at specific locations can be 
determined, travel behavior can be understood, and products 
can be improved. The challenge of data collection not only 
concerns public, but also private mobility. In the third 
interview, sharing data with respect to traffic was mentioned. 
For example, traffic information can be optimized by 
signaling accidents and proposing alternative routes to car 
drivers nearing an accident. This can lead to increased safety 
and decreased traffic delays. 

B. Crowdsensing for Smart Mobility 
Crowdsensing applications can contribute to the identified 
challenges in the field of smart mobility [15]. With real-time 
data collected from travelers’ smart devices, traffic flows as 
well as travel behavior and travel demand can be predicted 
[7]. Also, this allows transport operators to deliver more 
personalized services to travelers [16]. By gaining more 
insight in the current traffic system, transportation authorities 
can improve transport policies. For example, they can 
optimize congestion charges, taxation, and subsidies, 
contributing to smoother and more sustainable transportation 
[15].    
 However, major challenges in crowdsensing include trust 
and privacy issues, as well as the provision of appropriate 
incentives [9]. Several studies highlight the importance of 
incorporating privacy-preserving mechanisms into the 
design of crowdsensing incentives [8]-[17]-[18]. 
Specifically, a major concern with respect to privacy is 
maintaining user-level control over sensitive sensor data 
[19]. Here, privacy related to crowdsensing is defined as “the 
guarantee that participants maintain control over the release 
of their sensitive information. this includes the protection of 
information that can be inferred from both the sensor 
readings as well as from the interaction of the users with the 
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participatory sensing system”. Data captured by 
crowdsensing systems can reveal the identity of an individual 
based on location data and other data attributes and thus 
violate privacy [9]. A key challenge in crowdsensing is the 
identification of robust incentives that ensure participation of 
individuals, while taking into account privacy risks [8]. 
 Previous studies have addressed incentive mechanisms for 
vehicular crowdsensing (VCS) applications [20]-[21]-[22], 
in which vehicles act as probes that collect information about 
the environment. However, in this research we choose to 
focus specifically on mobile crowdsensing applications that 
use sensors from mobile devices such as smartphones, smart 
watches or smart bracelets. These applications have a huge 
potential coverage since the application can be used by 
anyone owning a smartphone or other smart device, and 
solutions can be applied to different modes of both public 
and private transport. However,  research on the trade-offs 
that users make when sharing data using the sensors on their 
smartphone is still limited [13]. As described in Section II-
A, three different types of potential applications of mobile 
crowdsensing are identified. In Section V, The results of our 
study are specifically applied to these use cases in the field 
of smart mobility.    

C. The Benefit-Cost Trade-off 
A theory relevant in this context of privacy risks and 
behavior of consumers is Privacy Calculus Theory. This 
model was first proposed by Laufer & Wolfe [24]. This 
theory states that individuals are more likely to disclose 
personal information if the benefits exceed the costs of data 
sharing [25]. Before making a decision whether or not to 
share data, consumers weigh the risks and benefits to assess 
the outcomes, and react accordingly [26]. Privacy risks are 
related to the expected loss of personal information to 
external parties or loss of control over personal information. 
Benefits of information disclosure can be provided in the 
form of financial rewards, personalization, and social 
adjustment benefits [27]. In previous studies, Privacy 
Calculus Theory has mainly been applied in the context of 
individuals’ self-disclosure on social networks or on 
websites. However, Privacy Calculus Theory as the 
theoretical basis in the context of IoT applications has been 
limited [28]. A conceptual model that applies the Privacy 
Calculus Theory to the context of crowdsensing systems is 
presented in Figure 1.   
 

 
Figure 1. Privacy Calculus 

In this benefit-cost trade-off, perceived benefits are either 
monetary or non-monetary incentives, which motivate 
individuals to engage in crowdsensing systems. Perceived 
costs are concerns about the disclosure of location or other 
personal data. Individuals are assumed to weigh these 
incentives and privacy concerns and make a decision on 
whether or not to participate in the crowdsensing system 
according to this trade-off. 

D. Basics of Choice Modelling  
This trade-off is made explicit in our research by applying a 
choice modelling approach. Choice modelling has been 
widely used in the field of travel behavior for identifying 
preferences for travel options that are not revealed in the 
market [29], for example to explore the choice travelers 
make between different travel routes [30]. Other examples of 
the application of choice modelling in the field of 
transportation are studies determining travelers’ willingness 
to pay for advanced public transport information services 
[31], the willingness to pay for safety improvements in 
passenger air travel [32], and the willingness to adopt 
Mobility as a Serivce (MaaS) in metropolitan areas [33].  
 A discrete choice model describes the choices of decision-
makers between different alternatives [34]. The Multinomial 
Logit (MNL) model, which is the most well-known discrete 
model, is derived by assuming that a decision-maker faces a 
choice among a certain amount of alternatives. When 
choosing an alternative, the decision-maker obtains a certain 
level of utility (or satisfaction). The utility of an alternative 
is composed of a systematic part (𝑉!),	 which can be 
measured by the researcher, and an unobserved part (𝜀!),	
which is an error term representing unobserved factors, 
heterogeneity in tastes, or randomness in choices.  
 
The utility of an alternative 𝑖 is defined as: 
 
𝑈! =	𝑉! + 𝜀!                 (1) 
 
where: 
𝑖 = alternative, e.g., scenario 1, scenario 2 
𝑈! = utility of alternative 	𝑖 
𝜀! = unobserved utility of alternative 𝑖 (error term). 
 



In this equation, the systematic part is defined as: 
 
𝑉! =	∑ 𝛽"𝑥!"𝑚                 (2) 
 
where: 
𝑚 = attribute, e.g., monetary reward, type of data 
𝛽" = attribute weight for an attribute 𝑚 in alternative 𝑖 (to 
be estimated in the model) 
𝑥!" = attribute value of attribute 𝑚 for alternative 𝑖, e.g., €20, 
€40. 
 
According to Random Utility Maximization (RUM) theory, 
which is underlying the MNL model, the decision-maker will 
choose the alternative providing the greatest utility [34]-[35]. 
 These choices can only be predicted up to a probability 
because of the error term, i.e., a higher systematic utility 
means there is a higher probability of the alternative being 
chosen. This probability is determined as: 
 

𝑝! =	
#!"

$%#!"
                  (3) 

 
where: 
𝑝! = probability that alternative 𝑖 is chosen 
𝑉! = systematic utility of alternative 𝑖. 
 
In the MNL model, the assumption is that no correlation 
exists between the choices made by an individual. However, 
in reality, repeated choices made by the same individual are 
correlated, caused by variation in preferences and tastes 
across individuals, as well as (partial) stability in preferences 
and tastes within the individual, across time. Since this 
implies the assumption that the dataset contains more 
information than it does in reality, we correct for this error 
by estimating Mixed Logit (ML) models for panel data in 
addition, which are able to capture utility-correlation 
between consecutive choices of respondents [34]. In order to 
obtain the ML model, an additional error component is added 
to the model, capturing (part of) the correlation between 
choices made by the same individual. This error component 
is drawn from as a zero mean continuous, normal 
distribution, in such a way that only the variance (σ) has to 
be estimated.  
 Our research aims to explain choice behavior in terms of 
underlying factors. Since there is a lack of understanding in 
the preferences of potential contributors to crowdsensing 
systems, a choice modelling approach is suitable to address 
the knowledge gap.   Approaches suggested in literature to 
design effective incentive mechanisms for crowdsensing 
applications have mostly relied on purely game-theoretic 
approaches. Users in crowdsensing systems might, however, 
exhibit different behavior. Modelling approaches can 
therefore complement previous studies by exploring the 
design space of user behavior [9]. The underlying factors that 
are used to explain choice behavior in crowdsensing 
applications for smart mobility are discussed in the next 
paragraph.  

E. Potential factors influencing the willingness to share 
data  

Individuals have a varying degree of perceived privacy 
concerns and attach a different value to their privacy [27]. 
This potentially influences the described benefit-cost trade-
off. Kumaraguru & Cranor [28], reviewing works on privacy 
indexes by Westin between 1978 and 2004, mention three 
categories referring to different groups regarding privacy 
concerns: 1) Privacy Fundamentalist, 2) Privacy Pragmatist, 
and 3) Privacy Unconcerned. In order to derive this Privacy 
Index, the  statements as displayed in Table 2 are used [36].  
Respondents agreeing with the first statement and 
disagreeing with the second and third statements, are 
considered Privacy Fundamentalists. Privacy Unconcerned 
respondents are respondents who disagree with the first 
statement and agree with the second and third statements. All 
other respondents are categorized as Privacy Pragmatists. 
Since these attitudes towards privacy could influence the 
willingness of potential users to share data in a crowdsensing 
application, these are taken into account in the experiment.
   
Table 2. Privacy Index 

 
A literature review was conducted in order to identify factors 
influencing the benefit-cost trade-off made by individuals 
when deciding whether or not to share data in crowdsensing 
applications for smart mobility. Since including too many 
factors in a choice experiment can lead to increased choice 
difficulty [37], five out of fourteen factors were selected to 
be included in the choice experiment, based on their 
prevalence in literature and the possibility to be influenced 
by policy or design.  
 
Monetary reward  
Bhatnagar & Kumra [38] found a significant positive impact 
of extrinsic, monetary rewards on the willingness to share 
IoT product data (n = 337). This is confirmed by research by 
Turland & Slade [39], concluding that participation rates are 
significantly higher when providing even a small monetary 
benefit. Furthermore, recent work shows that rewarding 
drivers with a small incentivization budget when taking 
minor detours towards roads with a higher sensing demand, 
can lead to significant improvements in spatio-temporal 
coverage, especially for minor roads [22]. 
 
Required effort  
Effort is seen as the time spent by performing sensing tasks. 
The expectation is that a higher effort has a negative effect 
on the willingness to participate. Salim & Haque [11] 

Privacy Segmentation Index 
Consumers have lost all control over how personal 
information is collected and used by companies. 
Most businesses handle the personal information they 
collect about consumers in a proper and confidential 
way. 
Existing laws and organizational practices provide a 
reasonable level of protection for consumer privacy 
today. 
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distinguish three levels regarding user engagement in 
crowdsensing systems. The lowest level (aware and consent) 
means that participants are aware of their participation and 
provide consent for data being collected, but their interaction 
with the system remains minimal or passive. Engaged users 
are more actively involved in the system and interact with 
the system by adding their feedback and experiences. At the 
collaborative level, which is the highest level of 
participation, users actively contribute more data and aim for 
a better coverage in data collection activities [11]. For 
example, participants can be asked to derive from their initial 
planned trajectory in order to achieve a better-balanced 
sensing coverage [20]-[22]. It is expected that a higher 
engagement level leads to a lower willingness to share data. 
Besides privacy concerns, this is therefore an additional 
“perceived cost” that is expected to influence the Privacy 
Calculus. 
 
Risk of re-identification  
The protection of users’ identity is a core aspect for privacy. 
In a study by Schomakers et al. [40], anonymization is 
discovered as the most important factor that influences users’ 
decision to share data (n = 126). Collected mobility data are 
potentially sensitive, since they could be used to reconstruct 
information about individual participants, such as commute 
patterns, routines, or private locations. For example, 
collection of GIS (Geographical Information System) 
coordinates simplifies the process of identifying the exact 
location of drivers, but also increases risks regarding privacy 
and security [41]. Thus, the risk of re-identification 
potentially influences the privacy risk as perceived by the 
user. 
 
Types of data  
Several sensors embedded in smart devices can be used for 
data collection. These sensors include sensors for 
localization (GPS, Wi-Fi, Bluetooth), physical motion 
sensors (accelerometer, gyroscope), environmental or 
contextual sensors (temperature and humidity sensors, 
barometer), and multimedia sensors (camera, microphone) 
[11]-[42]. According to Christin et al. [43], time and location 
data, sound samples, pictures and videos, acceleration, and 
environmental data can be potential threats to privacy when 
being shared with unauthorized parties. Especially when 
linked with other information provided by individuals, 
sharing microphone and camera data can be a threat to 
privacy [38]. The types of data being collected may therefore 
influence the perceived privacy risk. The willingness of 
people to share data in a crowdsensing system may depend 
on the kind of data being collected [40]-[45]. 
 
Data use  

 Another factor potentially influencing the willingness of 

individuals to share data, is the party with whom the data are 
shared [15]-[46]-[47]. Users are found to be more reluctant 
to share data with corporate institutions compared to 
academic institutions [43]. This finding is confirmed by 
research by Aitken et al. [48], showing that participants have 
greater support for data usage by the public sector compared 
to usage by the private sector. However, Turland & Slade 
[39] find an opposite effect in a study on crowdsensing for 
farm management. Here, users are more concerned about 
sharing data with the government compared to sharing with 
private organizations, echoing concerns about government 
surveillance. Related to the data collecting party, the purpose 
for which the data are used can play a role for individuals 
when considering participation in sensing tasks [8]-[40]-
[48]. 

III.  METHODOLOGY 

A. Stated Choice Experiment 
Data collection is required to model factors influencing 
choice behavior in crowdsensing applications. A choice can 
be made between collecting revealed preference (RP) data, 
mirroring the actual choices people made in real-life 
situations, or stated preference data, by presenting 
respondents with hypothetical choice scenarios [34].  Since 

Factor Levels 
Monetary reward €0/month 

€20/month 
€40/month 
€60/month 

Effort Low 
Moderate 
High 

Risk of re-
identification 

10%  
20%  
30%  

Types of data Time and location data  
Time and location data, Motion 
data 
Time and location data, Motion 
data, Contextual data 
Time and location data, Motion 
data, Contextual data, 
Multimedia data 

Data use Governmental institution 
aiming to improve mobility 
Academic institution aiming to 
investigate transport modes 
Corporate institution aiming to 
improve products or services 
Societal organization aiming to 
address local issues related to 
mobility 



crowdsensing is an emerging field for which no historical 
data are available yet, stated preference data were collected 
instead of revealed preference data. These data were 
collected by conducting a stated choice experiment, in which 
respondents have to choose whether they would share data 
or not in a presented situation.  

B. Experiment Design 
The hypothetical choice situations, also referred to as choice 
sets, were constructed by operationalizing the five factors 
identified in section II into attributes. Each attribute is varied 
in different attribute levels. These levels are based on the 
literature review as described in section II. The numerical 
levels require some additional explanation. Several previous 
studies use monetary benefits that range between €5 and €75 
per month [49]. In order to maintain equal distance between 
the attribute levels, we use a comparable range from €0 and 
€60 to vary the monetary reward. The risk of re-
identification is derived from the k-anonymity factor as used 
in previous research [40]. To increase the 
comprehensiveness of the attribute for respondents without 
knowledge on anonymization techniques, we reframed this 
attribute as the risk of re-identification. Since a large gap was 
observed in previous research between attribute levels 
because of unrealistic values [40], we use three levels with a 
slight difference in risk of re-identification. This risk of re-
identification is roughly based a k-anonymity of 1 out of 10 
(10%), 1 out of 5 (20%), and 1 out of 3 (30%). Since 
“complete anonymization” does not exist in reality, such a 
level was not used.  
 All attributes and attribute levels varied in the experiment 
are presented in Table 3.  
 
Table 3. Attributes and attribute levels 
 
Based on the attributes and attribute levels, the software 
NGene was used to construct choice sets for the choice 
experiment. The software finds the minimum number of 
choice scenarios, making sure that attribute levels have zero 
correlation, all pairs of attribute levels occur equally often 
across all pairs of alternatives, and each level occurs an equal 
amount of times for each alternative (also known as an 
orthogonal design) [50]. Taking into account these 
conditions, NGene found 36 choice sets, which is a number 
of scenarios that can still be perceived as too exhausting for 
a single respondent. Therefore,  blocking was applied, by 
dividing the choice sets into three smaller blocks of choice 
sets. This means that each respondent was presented with 
only 12 scenarios. Respondents were randomly assigned to 
block 1, block 2 or block 3. 
 

C. Survey Design 
The stated choice experiment was conducted through an 
online survey. The survey included an introduction to the 
topic and the experiment, after which 12 hypothetical choice 
situations were presented. An example of a choice scenario 
as presented to respondents is displayed in Figure 2.  

Figure 2. Example of a choice situation in the choice 
experiment  
 
At the end of the survey, the statements related to the Privacy 
Index, as well as questions related to personal characteristics 
were presented, including age, gender, education, income 
level, digital behavior, and altruism.  

IV. RESULTS ANALYSIS 

A. Descriptive analytics 
The target population comprised all smart device owners 
being 18 years or older. A total number of 125 appropriate 
records were collected. Of these 125 respondents, 38 
participated in block 1 (30,4%), 40 in block 2 (32,0%), and 
47 in block 3 (37,6%). In total, the “yes” option was chosen 
in 39% of the cases, and the “no” option was chosen in 61% 
of the cases. In order to see how respondents perceive 
privacy, they were categorized using Westin’s Privacy 
Index, as described in Section II-E. We found that, in our 
sample, 6% of respondents belong to the Privacy 
Unconcerned category, 47% to the Privacy Pragmatists, and 
47% to the Privacy Fundamentalists (Figure 3). When 
compared to percentages from previous surveys reported by 
Woodruff et al. [51], it appears that the Privacy Unconcerned 
percentage is almost similar (5-10%), the Privacy Pragmatist 
percentage is slightly higher (40-58%), and the Privacy 
Fundamentalist percentage is slightly lower (34-49%) in 
previous research.  
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Figure 3. Categories according to Privacy Index 
 
Using the obtained data, several models were estimated. This 
estimation process is discussed in Section IV-B. Based on 
the performance of the estimated models, the model that fits 
the data best is selected for further analysis in Section IV-C. 
Section IV-D elaborates on the final model that is selected. 
In Section IV-E, conclusions are drawn on the relative 
importance of factors on the willingness to share data, after 
which these results are discussed more elaborately in Section 
IV-F.      

B. Model estimations 
First, an MNL model was estimated including only the main 
effects of the factors, which is the simplest model and 
considered the base model. The systemic utility of this model 
is as follows: 
𝑉#$% = 𝛽#$% +	𝛽"&' ∙ 𝑚𝑜𝑛 +	𝛽$(( ∙ 𝑒𝑓𝑓 + 𝛽)!* ∙ 𝑟𝑖𝑑

+ 𝛽+&* ∙ 𝑡𝑜𝑑	 + 	𝛽,%$!"! ∙ (𝑢𝑠𝑒 == 1)
+ 𝛽,%$"#$ ∙ 													 (𝑢𝑠𝑒 == 2) +	𝛽,%$%#"
∙ (𝑢𝑠𝑒 == 3) 

𝑉'& = 	0                   (4) 
 
where: 
𝑉𝑦𝑒𝑠  = the systematic utility of sharing data 
𝑉𝑛𝑜  = the systematic utility of sharing no data 
𝛽#$%  = the base utility (constant) of choosing the “yes” 
option 

𝛽𝑚𝑜𝑛  = the marginal utility of the factor monetary reward 
𝛽𝑒𝑓𝑓  = the marginal utility of the factor effort 
𝛽)!*  = the marginal utility of the factor risk of re-
identification 
𝛽𝑡𝑜𝑑  = the marginal utility of the factor type of data 
𝛽,%$!"!  = the marginal utility of the factor data use by an 
academic institution 
𝛽𝑢𝑠𝑒"#$  = the marginal utility of the factor data use by a 
corporate institution 
𝛽,%$%#"  = the marginal utility of the factor data use by a 
societal organisation. 
 
Since the factor data use has categorical levels, this factor is 
dummy coded. Table 4 defines how this factor is coded. The 
parameters useaca, usecor, and usesoc are estimated by 
comparing them to the reference category, which is data use 
by a governmental institution.  
 

Table 4. Dummy coding of data use factor 

 
Besides the base model, a variety of other models were 
estimated, e.g., by including the effects of privacy 
perceptions or personal characteristics on the willingness to 
share data, also known as interaction effects. Furthermore, 
several Mixed Logit (ML) models were estimated, in order 
to capture heterogeneity in choices. We used 500 Halton 
draws to estimate the ML models, since these draws provide 
better coverage compared to using random draws [34]. Out 
of the estimated models, only the 14 most interesting models 
were included in the research, based on their performance 
and new insights they provide. All models were estimated 
using the Apollo package, which is a statistical tool in R. For 
every model, the estimation outcomes include the parameter 
estimates, measures for goodness of fit, and standard errors 
associated with the parameter estimates. 

C.  Model performance 
An essential step in discrete choice modelling is the selection 
process of models. Several ways exist that allow comparing 
different models. However, the model that is most useful for 
a given dataset depends highly on the purpose and context of 
the research [50].   
 The first strategy to compare models statistically is based 
on the estimated Log-Likelihood values. These values 
provide information on how well a model explains the data. 
For each model, the Likelihood Ratio Statistic (LRS) was 
calculated, which is obtained by (5): 
 
𝐿𝑅𝑆 = 	−2 ∙ (𝐿𝐿- − 𝐿𝐿.)	            (5) 
 
where: 
𝐿𝐿- = Log-Likelihood of null model 
𝐿𝐿. = Log-Likelihood of estimated model. 
The LRS is used to evaluate whether the model performs 
better than “throwing a dice”. Specifically, the statistic 
indicates how well the model performs compared to a model 
in which all parameters are set to zero (the null model) [34].  

 useaca usecor usesoc 

Governmental institution 
aiming to improve mobility 

0 0 0 

Academic institution aiming to 
investigate transport modes 

1 0 0 

Corporate institution aiming to 
improve products or services 

0 1 0 

Societal organisation aiming to 
address local issues related to 
mobility 

0 0 1 



If the LRS is higher than the threshold according to the χ2 
table, the conclusion can be drawn that the estimated model 
is better than the null model at  a given significance level. A 
higher LRS indicates a better model fit. Since the null-Log-
Likelihood (LL(0)) is similar for all models in this case, a 
higher LL(final) indicates a better performance. 
 A second statistic for scoring and comparing models is the 
Bayesian Information Criterion (BIC). The BIC value is 
based on the Log-Likelihood of the models and gives a 
penalty to more complex models that include a higher 
amount of parameters. A lower BIC value is considered 
better than a higher BIC value [34]. 
 Lastly, McFadden’s Rho-squared is a widely used 
measure for the goodness-of-fit of discrete choice models, 
measuring the uncertainty that is explained by the model, 
which is defined as (6) 
 
𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛/𝑠	pseudo-𝑅0 = 	1 −	 12	(55)

12	(55&)
      (6) 

 
The obtained value is always in the range of [0,1] and a 
higher value represents a better model fit. Note that this 
measure should be used in a relative sense and there is no 
rule of thumb for what is a “good fit” [50].  
 All 14 models were evaluated based on their model fit. It 
appeared that the MNL models with interaction effects did 
not explain the data better than the base model. The ML 
model with an additional error term performed better than the 
MNL model and was thus further inspected. The ML model  
with an error term for all parameters had the best model fit. 
The performance metrics for these three models are 
presented in Table 5. 
 
Table 5. Performance of estimated model  
 
The base model, which is an MNL model only including the 
five parameters, explains 15.53% of the initial uncertainty. 
The Likelihood Ratio Test resulted in a value of 322.96. This 
is higher than the χ2 value with 8 degrees of freedom, which 
is equal to 15.507. Thus, we conclude that the estimated 
model fits the data better than the model of throwing a dice. 
The Mixed Logit model with an additional error term added 
to each parameter appeared to perform best on the data, 
compared to the other estimated models. In this model, 
unobserved heterogeneity is captured and corrected for. The 
model has a Rho-square of 0.3499, meaning that it explains 
35% of the initial uncertainty. Also, the BIC for this model 
is relatively low, and the final Log-Likelihood is relatively 
high, meaning that the Mixed Logit model with all 
parameters random performs better when compared to the 
other models. Thus, this model is selected as the final model 
for further analysis. 

D. Parameter estimates 
The parameter estimates of the final model, including the 
standard errors of these parameters, are presented in Table 6. 
The second column presents the parameters estimated in the 
model. The third column (estimate) shows the estimated 
weight of the factors, which is defined as the utils gained or 
lost by 1 unit increase of the attribute. The fourth column 

displays the standard errors associated with the parameter 
estimates, illustrating the variation of the estimate across the 
sample. This standard error is a measure of uncertainty about 
the true 𝛽. The fifth and sixth column present the t-Test 
results. The t-ratios, which are based on the parameter 
divided by its standard error, are used for determining if the 
attributes have an effect on choices in the population. Based 
on these t-ratios, the p-values are computed. Factors with an 
indicated p-value being higher than 0.05 are considered 
statistically insignificant, meaning that no effect can be 
observed in the population. More specifically, p can be seen 
as the probability that the null-hypothesis that the true 𝛽 (in 
the population) = 0, is true. If this probability is smaller than 
0.05, this null hypothesis is rejected.  
 The parameter for data use by societal organizations 
appears to be insignificant (p>0.05). This means we have too 
little evidence to reject the null-hypothesis (i.e., that	𝛽 = 0 in 
the population). However, since our research has a design 
goal rather than a social science question and this estimate is 
still the best guess for the parameter, we choose to keep the 
parameter included in the model. All sigma’s (the error 
terms) are significant. Thus, it can be observed that more 
heterogeneity is captured in this model, which has extra error 
terms for all parameters. The monetary reward parameter has 
a positive sign, representing a positive effect on the 
willingness to share data, while the effort, risk of re-
identification and type of data parameters have a negative 
sign, which is as expected. 
 
Table 6. Estimates ML model with all parameters random 

Attribut
e 

Parame
ter 

Estim
ate 

s.e. Rob.t.rat
.(0) 

p(1-
side

d) 
Monetary 
reward 

𝜷𝒎𝒐𝒏 0.995
6 

0.18
98 

4.682 0.00
00 

Effort 𝜷𝒆𝒇𝒇 -
1.969

2 

0.28
85 

-6.225 0.00
00 

Description LL(final
) 

LL(0) BIC Rho-
square 

MNL with 
main 
effects 

-878.24 -
1039.72 

1814.98 0.1553 

ML model 
with error 
term 

-735.61 -
1039.72 

1537.03 0.2925 

ML model 
with all 
parameters 
random 

-675.93 -
1039.72 

1468.87 0.3499 
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Risk of 
re-
identifica
tion 

𝜷𝒓𝒊𝒅 -
1.125

8 

0.24
02 

-4.845 0.00
00 

Types of 
data 

𝜷𝒕𝒐𝒅 -
0.945

5 

0.15
83 

-5.382 0.00
00 

Data use 
by 
academic 
institutio
n 

𝜷𝒖𝒔𝒆𝒂𝒄𝒂 0.981
9 

0.39
10 

2.353 0.00
93 

Data use 
by 
corporate 
institutio
n 

𝜷𝒖𝒔𝒆𝒄𝒐𝒓 -
2.273

5 

0.57
54 

-3.184 0.00
00 

Data use 
by 
societal 
organisat
ion 

𝜷𝒖𝒔𝒆𝒔𝒐𝒄 -
0.270

8 

0.32
87 

-0.713 0.23
79 

Base 
utility 
(constant
) 

𝜷𝒚𝒆𝒔 2.103
7 

0.46
66 

4.491 0.00
00 

Error 
term base 
utility 

𝝈𝒚𝒆𝒔 2.882
5 

0.48
40 

5.475 0.00
00 

Error 
term 
monetary 
reward 

𝝈𝒎𝒐𝒏 1.464
5 

0.24
93 

4.949 0.00
00 

Error 
term 
effort 

𝝈𝒆𝒇𝒇 1.275
8 

0.23
46 

5.346 0.00
00 

Error 
term risk 
of re-
identifica
tion 

𝝈𝒓𝒊𝒅 1.664
7 

0.30
79 

-4.832 0.00
00 

Error 
term 
types of 
data 

𝝈𝒕𝒐𝒅 0.627
6 

0.14
65 

4.611 0.00
00 

Error 
term data 
use by 
academic 
institutio
n 

𝝈𝒖𝒔𝒆𝒂𝒄𝒂 1.686
3 

0.40
99 

3.925 0.00
00 

Error 
term data 
use by 
corporate 
institutio
n 

𝝈𝒖𝒔𝒆𝒄𝒐𝒓 3.765
1 

0.79
29 

3.807 0.00
00 

Error 
term data 
use by 
societal 
organisat
ion 

𝝈𝒖𝒔𝒆𝒔𝒐𝒄 1.452
6 

0.47
81 

2.523 0.00
58 

 

E. Model interpretation 
The parameter estimates cannot be interpreted directly. 
Therefore, by using the utility ranges of the attributes, the 
relative importance of each factor in the decision to share 
data in a crowdsensing application is calculated. The relative 
importance can be obtained by calculating the utility 
contribution of an attribute as a percentage of the sum of 
utility contributions. The utility contribution is calculated by 
multiplying the estimate with the maximum value of the 
attribute. According to the utility contributions, effort is the 
most important factor that affects the benefit-cost trade-off 
by individuals (26%), as presented in Figure 4. The other 
factors playing a role in the decision, in order of importance, 
are types of data (21%), data use (18%), monetary reward 
(18%), and risk of re-identification (17%). 
 

 
Figure 4. Relative importance of attributes (ML model) 

F. Discussion of results 
The factors that were included in the model are discussed in 
the following paragraphs, in order of importance. 
 
Effort 
Heiskala et al. [15] notes that users may feel overburdened 
when applications ask them to report observations. No 
previous study was found that included both required effort 
and privacy-related attributes in a choice experiment. From 
the results, however, it can be concluded that effort does play 
a highly important role in consumers’ decisions regarding 
data sharing, and is regarded as more important than the 
types of data being collected, the data use, or the risk of re-
identification. 
 
Data use 
When making a decision whether or not to participate, users 
take into account the party collecting the data and for what 
purpose. According to the results, the potential parties 
collecting data, ranked from most accepted to least accepted 
are 1) An academic institution aiming to investigate transport 
modes, 2) A governmental institution aiming to improve 

0% 5% 10% 15% 20% 25% 30%

Monetary reward

Effort

Risk of re-identification

Types of data

Data use

Relative importance



mobility, 3) A societal organization aiming to address local 
issues regarding mobility, and 4) A corporate institution 
aiming to improve products or services. Data collection by 
academic institutions is most accepted, while data collection 
by corporate institutions for improving products and services 
is least accepted. These findings are in line with previous 
studies on data sharing, in which was found that people claim 
higher rewards when sharing data with corporate institutions 
when compared to academic institutions [40]-[43].  
  
Monetary reward  
The finding that people are more likely to share data when 
receiving a higher financial reward in return is in line with 
research by Derikx et al. [52] and Schomakers et al. [40]. 
These studies also found that individuals are more willing to 
share data when a financial compensation is offered in return.  
  Train [34] describes a function to calculate the Value of 
Time. This is defined as the extra cost that a person would be 
willing to incur in order to save time. This Value of Time is 
calculated by using the estimated coefficients of cost and 
various time components. Inspired by this definition, we can 
specify a function that calculates the Value of Privacy (VoP). 
This function is defined in (7).   
	
𝑉𝑜𝑃 = 	

-!
-./0
-!

-123

=	 &4"5
&678

              (7)  

 
Here, βrid presents the estimate for the risk of re-
identification attribute, and βmon presents the estimate for the 
monetary reward attribute. According to the base model, the 
Value of Privacy is equal to 1.41 €/pp, meaning that people 
want to receive an amount of €14.10 per month if the risk of 
re-identification is increased by 10 percentage points.  
 
Types of data  
In order to determine if an unequal utility contribution from 
each attribute level can be observed for the types of data 
factor, the factor was tested for non-linearity effects. In 
Figure 5, the results are displayed. The utility contribution 
displayed on the y-axis is a measure to compare the impact 
that attribute levels have on the choice made by individuals. 
Since types of data has a negative impact on individuals’ 
choices, a higher utility contribution indicates that the 
attribute level has a higher negative impact on the utility 
(satisfaction) of people. From Figure 5, a large increase in 
disutility can be observed when moving from the third to the 
fourth level, which means multimedia data is shared in 
addition. This means that people are more sensitive to the 
types of data attribute when more types of data are being 
shared. 
 

 
Figure 5. Utility contribution of types of data attribute 
levels 

Our finding that there is a large gap in acceptance between 
collection of location, motion and context data and the 
collection of multimedia data in addition to these data, 
confirms previous research on sharing data from smart home 
applications [47]. The collection of motion data in addition 
to location data is highly accepted by users, while the 
collection of multimedia causes a large decrease in 
acceptance. 
 
Risk of re-identification  
The risk of re-identification appeared to be least important to 
participants in our study. From the statements categorizing 
individuals in Westin’s Privacy Index, it appears that only a 
small number of people were categorized as Privacy 
Unconcerned, while a percentage of 47% of respondents 
were in the “Privacy Fundamentalist” group. This means that 
people in our study indicate to be concerned about their 
privacy and about how their data is handled. However, this 
is not  clearly reflected in the choices they make, since the 
risk of re-identification factor has a relatively low 
importance.  
 In order to see if people being highly concerned about their 
privacy assign a higher importance to the risk of re-
identification factor, the preferences of the Privacy 
Fundamentalists were further examined by estimating an 
MNL model for only this group of people. When comparing 
the estimated parameters to the estimates for the whole 
sample, it appears that the Privacy Fundamentalist group 
assigns a slightly higher importance to privacy-related 
factors (risk of re-identification, types of data, data use). 
However, these differences are insignificant in the 
population.  
 Since 47% of respondents indicate being highly concerned 
about their privacy, the fact that the risk of re-identification 
is regarded as the least important factor seems unexpected. 
This phenomenon can be explained by a concept known as 
the “Privacy Paradox”, describing that on one hand, people 
express their concerns about the handling of their personal 
data, while at the same time, they often choose to share their 
data voluntarily and rarely make an effort to actively protect 
their data [53]. 

V. APPLICATIONS FOR SMART MOBILITY 
From the conducted interviews described in Section II, it 
appears that parties are already collecting data. However, 
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these data is often not real-time. By involving users, mobile 
crowdsensing could be a valuable data source in addition to 
existing sources of data. Yet, the challenges of how to take 
into account users’ preferences, and how to achieve a 
sufficient coverage, remain. In order to get insight in what 
factors could be influenced by parties in the field of smart 
mobility (municipality, car manufacturers, and transport 
operators) to design crowdsensing applications with the 
desired participation rate, the use cases as described in 
Section II-A were used for the purpose of defining choice 
situations, with attributes as varied in our choice experiment. 
Using the results from the estimated base model, the 
probabilities of acceptance for these combinations of 
attribute levels not included in the choice experiment, can be 
calculated. Table 7 shows an example of three different 
scenarios for implementing crowdsensing as a solution to 
digitize crowd management in a city.  
 
Table 7. Participation rates for crowd management in a city 

Factor Scenario 1 Scenario 2 Scenario 3 
Monetary 
reward 

€60 per 
month 

€60 per 
month 

€60 per 
month 

Effort Low Moderate Low 
Risk of re-
identificati
on 

10% 10% 10% 

Types of 
data 

Location 
data, 
motion data 

Location 
data, 
motion data 

Location 
data, 
motion 
data, 
contextual 
data 

Data use Governmen
tal 
institution 
aiming to 
improve 
mobility 

Governmen
tal 
institution 
aiming to 
improve 
mobility 

Governmen
tal 
institution 
aiming to 
improve 
mobility 

Participati
on rate 

80% 66% 73% 

 
By analyzing the expected participation rates, two main 
trade-offs for designing crowdsensing applications for smart 
mobility were identified. One finding was that a trade-off has 
to be made between the reliability of collected data and the 
participation rate. Requiring more inputs from users can 
enhance the reliability of the data, since feedback is provided 
about, e.g., the precise location of an individual. However, 
this also requires more effort from users, leading to a lower 
participation rate. This finding aligns with and adds to the 
Technology Acceptance Model originated by Davis [54], 
stating that perceived ease of use influences the likelihood of 
an application being adopted by a user.     
 Another trade-off needs to be made between the richness 
of information and the privacy of users. Collecting more 
data, like contextual data and multimedia, can provide more 

information about the context and travelling situation of a 
specific user [55]. Especially for applications in transport 
modes like trams or buses, which are often driving next to 
other vehicles in a crowded city, more accurate data are 
needed to determine the exact location and current mode of 
transport of a user. Since research by Masoud et al. [42] 
argued that the accuracy of location information can be 
improved by collecting contextual data, this could be an 
effective way to gain accurate insights. Also, multimedia 
data can be collected to characterize places more easily by 
using location-tagged images and videos and can further 
enrich the obtained information. However this also increases 
the risk of a data leading to a specific individual. 
Consequently, the collection of additional data results in a 
lower participation rate.  Depending on the specific 
requirements for the smart mobility application, as well as 
the specific mode of transport for which the application is 
being used, these trade-offs can be evaluated differently.  

VI. DISCUSSION 

A. Scientific and societal implications 
Since little research has been conducted before on user 
behavior and incentives in mobile crowdsensing systems, our 
study adds to this field of research. Future research can build 
upon this study by investigating the user-friendliness of 
crowdsensing applications and further investigating the 
effort attribute, which appeared to be an important factor for 
potential users. Also, our study provides an insight in the 
monetary value users assign to their privacy when presented 
with different choice scenarios. Further research should be 
conducted on the risks of crowdsensing applications and user 
perceptions of these risks.  
 Besides scientific implications, this study also has societal 
implications. Our research goes beyond the technological 
aspects of crowdsensing applications and provides insights 
in values and trade-offs that come with developing 
crowdsensing applications for smart mobility. Taking into 
account the preferences of users as discovered in our 
research allows for a value-sensitive design of crowdsensing 
applications. Based on our study, practical guidelines can be 
derived for designing crowdsensing applications. We 
propose three principles: 

• Tailor-made applications, by giving users control 
over the data they want and do not want to share, 
thus meeting differing preferences among users.  

• Transparency by design, by being transparent to 
users about potential risks and involving their 
concerns in the design process from the beginning. 

• Ensuring attractiveness of applications, by 
minimizing the user-burden and giving social 
incentives such as awards. 

B. Limitations 
When interpretating the results of this study, several 
limitations should be noted. Three limitations are mentioned.  
 The first limitation concerns the setup of the experiment. 
In order to limit the length of the survey, the amount of 
attributes was reduced to only 5 factors. However, 14 factors 
in total were identified in the literature research. Because of 



this simplification, other factors potentially influencing the 
willingness to share data are unaddressed in this study. 
Although the choice of factors was made carefully, 
considering a higher amount of factors or attribute levels 
may lead to a richer explanation of the choice behavior. Also, 
when setting up the experiment, the ranges of the monetary 
reward and risk of re-identification attribute levels were 
determined based on a careful review of previous 
experiments. However, choosing a higher or lower upper 
limit for these levels may have led to different results on the 
relative importance of these factors. Future research could 
investigate the amount of money that participants would 
want to receive in turn for sharing their data, to determine the 
most realistic range for this attribute. Previous research 
found that people even want to pay money when receiving 
relevant personalised promotions from their insurance 
company [52]. A future experiment could investigate if 
people would want to pay for participating in a sensing 
application, if being provided with a useful service.        
 Secondly, we should mention that the risk of re-
identification attribute gives a limited indication of the 
degree of privacy protection. The risk of re-identification 
was based on the principle of k-anonymization. In our study, 
the risk of re-identification appeared to be the least important 
attribute that influences the decision of individuals to share 
data, a finding which is not in line with research by 
Schomakers et al. [40]. This could be due to two reasons. 
First, in the experiment set-up, we varied the attribute 
between 10% and 30%, which is a limited range. Although 
“full” anonymization is not really possible (which would be 
the 0% level), in reality the range could be larger, like 
mentioned in Section VI-A. Furthermore, the question can be 
asked whether participants fully understood the meaning of 
the risk of re-identification and what effect it can have on 
their privacy. In the survey, we provided an explanation of 
the attribute. However, the risk, described in percentages, 
could still have been a rather intangible attribute to 
respondents.  
 Lastly, the choice for applying choice modelling as the 
main method in this research requires some reflection. A 
discrete choice experiment makes the trade-offs explicit that 
play a role in the motivation of individuals with respect to 
data sharing, and allows for a prediction of future choices of 
individuals.  The discrete choice experiment indirectly 
recovers the values behind people’s choices, which provides 
insights on ethical aspects to incorporate in application 
design. The choice modelling approach is unique in 
assigning a numerical value to the weighing of these 
underlying motivating factors. However, the ethical aspects 
regarding privacy and trust should not be overlooked. Even 
if consumers indicate they want to sacrifice a part of their 
privacy in turn for some benefit, the question should always 
be asked if certain data should indeed be collected [56]. 

VII. CONCLUSION 
This paper explored factors influencing the willingness of 
smart device owners to share data in mobile crowdsensing 
applications for smart mobility. Implementing crowdsensing 
applications is a potential solution contributing to smarter 

and more efficient mobility systems. When choosing 
whether or not to share data in a crowdsensing application, 
we found that the required effort of participation is regarded 
the most important factor by respondents. The risk of re-
identification was found to be the least important factor in 
our sample. However, this does not mean that privacy is not 
important to smart device users. A relatively high amount of 
respondents (47%) indicated being concerned about their 
privacy. The phenomenon known as the Privacy Paradox 
could have played a role, stating that people tend to indicate 
being highly concerned about their privacy, while this is not 
reflected in their actual choices.  
 This study provides a new understanding of user 
preferences in crowdsensing systems for smart mobility. 
While previous research investigated the benefit-cost trade-
off looking at privacy- and money-related factors, we show 
that the required effort is an additional factor which is highly 
important to users. Also, new insights were gained in the 
preferences of people that are highly concerned about their 
privacy and the handling of their personal data, by using the 
indexes as defined by Westin. Besides understanding the 
user side of crowdsensing applications, we were able to get 
insight in the challenges experienced by parties in the field 
of smart mobility when implementing such applications. By 
conducting interviews with relevant parties, we gained an 
understanding of current developments in the smart mobility 
sector. Through combining both quantitative and qualitative 
approaches, our study explores the expected participation of 
potential users in different scenarios, which were derived 
from realistic use cases. The insights provided by this study 
form a basis for further research on perceived benefits and 
privacy perceptions of users, contributing to the design 
value-sensitive and effective smart mobility services, which 
are becoming more critical for ensuring the efficiency, 
safety, and sustainability of transportation systems. 
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