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Consolidate IoT Edge Computing with
Lightweight Virtualization

Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jörg Ott

Abstract—Lightweight Virtualization (LV) technologies have
refashioned the world of software development by introducing
flexibility and new ways of managing and distributing software.
Edge computing complements today’s powerful centralized data
centers with a large number of distributed nodes that provide
virtualization close to the data source and end users. This
emerging paradigm offers ubiquitous processing capabilities on a
wide range of heterogeneous hardware characterized by different
processing power and energy availability. The scope of this
article is to present an in-depth analysis on the requirements
of edge computing in the perspective of three selected use cases
particularly interesting for harnessing the power of the Internet
of Things (IoT). We discuss and compare the applicability of
two LV technologies, containers and unikernels, as platforms
for enabling scalability, security and manageability required by
such pervasive applications that soon may be part of our every-
day life. To inspire further research, we identify open problems
and highlight future directions to serve as a road map for both
industry and academia.

Index Terms—IoT, Edge Computing, Container, Unikernel

I. INTRODUCTION

OVER the last decade, the development of the Internet
of Things (IoT) has been uphold by the cloud-based

infrastructures that aim to cope with the increasing number of
IoT services provided by various connected devices. From the
initial design, IoT was conceived as extending the Internet with
a new class of devices and use cases [1]. This has obviously
generated an intrinsic association between IoT and cloud,
where the cloud-based network infrastructures are optimized to
support a multitude of IoT-centric operations such as service
management, computation offloading, data storage, and off-
line analysis of data.

However, this notion of cloud-connected IoT deployment
assumes that most IoT edge networks need to be connected
to the cloud, e.g., through some edge gateway and tunnel
approach. This centralized model has been challenged recently
for meeting the more and more stringent performance require-
ments of IoT services, especially in terms of latency and
bandwidth. In specific, the existing model is not suitable when:
a) IoT edge networks create data that needs to be accessed
and processed locally, b) piping everything to the cloud and
back is not acceptable under delay constraints, and c) the
amount of data is too large to transfer to the cloud (in real-
time) without causing congestion on the backhaul. Clearly,
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Figure 1: A subset of use cases and services enabled by IoT
edge computing

the highly fragmented and heterogeneous IoT landscape needs
to encompass novel and reactive approaches for dealing with
these challenges.

One emerging paradigm, edge computing, represents a new
trend to improve the overall infrastructure efficiency by de-
livering low-latency, bandwidth-efficient and resilient services
to IoT users. Although this new approach is not intended to
replace the cloud-based infrastructure, it expands the cloud by
increasing the computing and storage resources available at
the network edge. One typical example is IoT edge offloading
[2], which revisits the conventional cloud-based computation
offloading where mobile devices resort to resourceful servers
to handle heavy computation [3]. To cater for the demands
of new IoT services, the computation is reversely dispatched
by the servers to constrained devices deployed at the network
edge, close to users and data generators.

By harnessing the power of distributed edge resources, the
IoT edge computing model can support novel service scenarios
such as, for example, autonomous vehicles/drones, smart cities
infrastructure and augmented reality (AR). As highlighted in
Figure 1, these three representative domains intersect with
each other. Edge computing is the linking knot that helps
spawn and promote appealing joint services.

Concerning the key aspects of edge computing including
scalability, multi-tenancy, security, privacy and flexibility, the
fast evolving lightweight virtualization technologies (discussed



in Section IV) have been sorted to fulfill the requirements
given their matching features. Meanwhile, we still lack com-
prehensive guidelines to illustrate how can we exploit the
full potential of lightweight virtualization to enhance edge
computing, especially for those pleading IoT use cases.

As a solid step towards realizing the IoT edge computing
vision, we aim to answer through this article a major question:
Can Lightweight Virtualization (LV), in its different flavors, be
exploited for empowering edge architectures and be suitable
in a wide range of IoT pervasive environments? Our use-
case study, comparison analysis, and prospect outlook further
address the following questions:
• Which LV features can match the increasingly strict re-

quirements of IoT services in constrained environments?
• How can LV and IoT edge scenarios be efficiently utilized

together?
• Which challenges must be tackled to effectively exploit

the benefits introduced by LV in this context?
The remainder of this article is organized as follows.

Motivations of the proposed work are presented in Section
II. Section III introduces first the requirements that different
Edge for IoT cases entail, and then the suitability of LV on
mitigating and satisfying them. We introduce LV technologies
and illustrate three specific use cases in Section IV and V.
Finally, we unveil the open issues and challenges before
concluding the article.

II. MOTIVATION

In the context of IoT, edge computing introduces an in-
termediate layer in the conventional IoT-Cloud computing
model. The envisioned edge-driven IoT environment consists
of three components: IoT devices, edge layer, and cloud
backend. Being a central part of the ecosystem, the edge layer
owns the crucial role of bridging and interfacing the central
cloud with IoT. Essentially, an edge element in this layer
can be characterized by a small to medium size computing
entity that aims to provide extra computing, storage, and
networking resources to the applications deployed across IoT
devices, edge and cloud. Depending on the specific scenario,
its functionalities can be executed in cellular base stations,
IoT gateways, or more generally, low-power nodes and small
data-centers. These may be owned and operated by the user,
by a cloud provider or a telecom operator (in Mobile Edge
Computing).

Although the placement of a “middle layer" between the
end devices and cloud is an architectural concept that is widely
utilized in common network infrastructures, such conventional
middle layer targets mainly connectivity, routing, and network-
oriented functionalities. For example, Network Function Virtu-
alization (NFV) [4], [5] virtualizes typical network elements,
such as firewalls, network address translators, switches, and
core network components.

For IoT ecosystems, edge computing aims to meet IoT
service providers’ demand of owning a dedicated infrastructure
that is independent of a given technology or use case, and
which is capable of satisfy the demanding IoT services’
performance requirements. More importantly, in contrary to

the plain middle layer solutions, the IoT-centric edge com-
puting must entail programmability and flexibility to deliver
ubiquitous processing capabilities across a wide range of
heterogeneous hardware. For instance, besides managing IoT
home network, the edge layer can simultaneously provide
image processing for home camera and data pre-processing
operations.

Obviously, the heterogeneous characteristics of various in-
stances and applications deployed on top of the edge layer
will generate unique challenges that need to be addressed.
From the architectural perspective, this implies that edge layer
has to efficiently and mutually cooperate both with cloud-
based services and IoT devices, by acting as a bridge between
elements that require distinct way of interaction.

In this context, it is crucial to equip the edge layer with
tools that allow a flexible, performing, and automated way of
efficient services provisioning. Hence, edge elements have to
embed service provisioning methods that are independent of
the managed applications and communication patterns, and at
the same time suitable to different types of traffic and to the
application needs, through a cross-layer support. The key is
to ensure a virtuous trade-off between design requirements,
specific performance targets, and applications manageability
spanning the entire three-tier IoT edge computing architecture.

III. EMPOWERING IOT EDGE COMPUTING WITH LV
To fully attain the potential of edge computing for IoT, we

need to address four concerns: abstraction, programmability
interoperability, and elasticity. In particular for the three-tier
IoT edge computing architecture, it is crucial to provide simple
and yet efficient configuration and instantiation methods that
are independent of the technologies used by different IoT and
cloud providers. The tools embedded in edge layer should
share common functionalities, exploit common APIs for or-
chestrating interconnections different networking technologies.

To help us acquire a synoptic view, we highlight the
dominant requirements of representative use cases in Figure
2, which encompasses scalability, multi-tenancy, privacy &
security, latency, and extensibility.

Compared to alternative virtualization solutions such as
hypervisors, we envision a trend towards using lightweight
virtualization (LV) technologies in the IoT edge computing.
These emerging software solutions can provide the needed
supports in terms of hardware abstraction, programmability
interoperability, and elasticity. A direct benefit that emerges
from employing LV in the IoT edge domain is by avoiding
the strict dependency on any given technology or use case.
Within a lightweight virtualized instance, either container
or unikernel (discussed in Section IV), we can efficiently
deploy applications designed to manage and use extremely
different technologies. In addition, equipping edge elements
with newer services will be made easier since we only need to
configure and instantiate stand-alone virtualized applications.
This feature avoids complex re-programming and updating
operations that are part of the software lifecycle management.
Through LV, such complexity is circumvented because updat-
ing a particular service requires changes only within a specific
virtualized instance.
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Scenarios Requirements

Scalability Multi-tenancy Privacy & Security Latency Extensibility (Open API)
Autonomus Vehicles Non critical Non critical Critical. Autonomous vehicles possess sensitive 

information about the user. Moreover, the con-
stant need of sensors data for navigation make 
cars a primary target for malicious users.

Critical. Cars have strict real-time 
requirements

Non critical. Each car manufacturer will 
probably run exclusively their own software 
to ensure security and reliability.

Augmented Reality Critical Critical Critical when processing sensitive multimedia 
streams.

Critical. AR applications require 
real-time information feed to 
ensure a smooth and acceptable 
experience.

Critical. Open API are important in this 
case to enable new services and features.

Smart Sensors Networks Critical Critical due to the num-
ber of potential users.

Depends on the specific Smart context (for 
Smart Health it’s critical but not for Smart 
Environment). Strict control over which data 
can be public is required.

Depends. For example, in the case 
of Machine Type Communications 
(MTC) it’s critical.

Critical to enable the creation of an ‘IoT 
Marketplace’ where developers can offer 
new and innovative application exploiting 
collected data.

Smart Grid Non critical. Data and 
messages are exchanged at a 
fixed, predefined rate.

Non critical. The 
infrastructure is usually 
controlled by a single 
provider.

Critical. Disclosure and analysis of energy con-
sumption information can lead to user profiling 
and tracking.

Critical especially for messages as 
Phasor Measurement Unit (PMU) 
or Advanced Metering Infrastruc-
ture (AMI).

Non critical

E-Health Critical. IoT healthcare net-
works must be able to meet 
the growing demand of ser-
vices from both individuals 
and health organizations.

Critical as multiple 
healthcare organizations 
and/or heterogeneous 
IoT medical devices 
could share the same 
network infrastructure.

Critical. IoT-edge medical devices deal with 
personal heath data, which need to be securely 
stored. Integrity, privacy, and confidentiality 
must be kept.

Depends. It’s critical in use-cases 
as remote surgery. Nevertheless, 
response time can be acceptable in 
other scenarios.

Critical to support new application able to 
offer a more accurate patients health condi-
tion monitoring.

Distributed Surveillance Critical. Several control 
units are needed in order to 
grant the system of better 
usability and robustness.

Non-critical. A single 
provider usually controls 
the infrastructure.

Critical considering the sensitive information 
handled.

Critical to promptly identify 
suspects or recognize on-going 
crimes.

Non-critical. Same as Autonomous vehicles. 

Big Data Analytics Critical. A big data analytics 
system must be able to 
support very large datasets. 
All the components must be 
scalable to accommodate the 
constantly growing amount 
of data to be handled.

Critical. A single Big 
Data system has to be 
able to co-locate different 
use cases, applications, 
or data sets.

Critical. Users share large amount of personal 
data and sensitive content through their person-
al devices towards applications (e.g., social net-
works) and public clouds. Equipping Big Data 
systems of secure frameworks capable to store 
and manage user data with high sensitiveness 
represents a critical aspect.

Non critical Critical to improve and deploy different 
algorithms and tools.

Network Function Vir-
tualization (NFV)

Critical. Demand of new 
services is high and con-
stantly growing.

Critical. Resources are 
shared among custom-
ers. A large number of 
multi-tenant networks 
run over a physical 
network.

Critical. The use of additional software (e.g., 
hypervisors, containers or unikernels) ex-
tends the chain of trust. Resource pooling and 
multi-tenancy bring further security/privacy 
threats.

Critical. NFV need to leverage 
real-time delivery services. NFV 
introduces additional sources of 
latency through the virtualization 
layer.

Non critical

Figure 2: Example of Edge-IoT scenarios requirements

To foster integration with the cloud, LV can also enable
cross-platform deployment, allowing a common execution
environment across cloud, edge elements, and even constrained
IoT devices. The cross-platform deployment benefit introduced
by LV further allows both cloud and edge, regardless of
their computational hardware capability, to “speak the same
language". As suggested in [2], using the same LV instance
will enable us to efficiently run them both at the edge and in
the cloud, hence achieving a decentralized IoT edge service
provisioning architecture. This consequently meets the strict
performance requirements of demanding IoT scenarios, and
further ensures the crucial requirement of multi-tenancy.

We also note that there are scenarios where virtualization
technology is not a suitable option, for manifold reasons. In
general, virtualization entails additional delay and resources
utilization, which can be challenging for certain real-time or
mission-critical tasks that demand low and predictable latency.
Moreover, there are fundamental hardware requirements to run
a virtualized environment (e.g. a CPU with specific architec-
tural features) that are not easily found on low-end IoT and
edge devices.

IV. OVERVIEW OF LIGHTWEIGHT VIRTUALIZATION

System virtualization has drastically evolved in the last
years offering system architects and developers a plethora of

tools to exploit. Therefore, understanding how and when to
utilize a specific technology based on the hardware constraints
and applicative requirements is a crucial step of the system
design phase. Shifting our focus on edge computing and
IoT, we identify two main candidates that could address the
challenges unique to this domain: containers and unikernels.

Figure 3 presents both quantitative metrics and architectural
differences between the aforementioned technologies, high-
lighting their main characteristics.

A. Container-based Virtualization: Docker

Container-based virtualization provides a different level of
abstraction in terms of virtualization and isolation when com-
pared to other virtualization solutions. In particular, containers
can be considered as one of the lightweight alternatives to
hypervisor-based virtualization. The conventional hypervisor-
based virtualization has been the de facto technology used
during the last decade for implementing server virtualization
and isolation. Hypervisors operate at the hardware level — that
is, building customizable virtual hardware and virtual device
drivers — thus supporting standalone Virtual Machines (VMs)
that are independent and isolated from the underlying host
system. In each VM instance, a full Operating System (OS)
is typically installed on top of the virtualized hardware, thus
generating large VMs images. Furthermore, the emulation of
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LV Technique Property

Instantiation time Image size Memory footprint Programming language dependency Hardware portability Live migration support

Virtual Machine
•	 KVM
•	 QEMU

~5/10 secs ~1000 MBs ~100 MBs No High Yes

Container
•	 Docker (http://www.docker.com/)
•	 rkt (https://coreos.com/rkt)
•	 OpenVZ https://openvz.org/
•	 LXC https://linuxcontainers.org/

~800/1000 msecs ~50 MBs ~5 MBs No High No

Unikernel 
•	 MirageOS (https://mirage.io/)
•	 HaLVM (http://galois.com/project/)
•	 IncludeOS (www.includeos.org)
•	 ClickOS (http://cnp.neclab.eu/clickos/)
•	 OSv (osv.io)

~< 50 msecs ~< 5MBs (bundle) ~8 MBs Yes (i.e., MirageOS unikernels can only be 
written in OCaml)

High No. Requires manual imple-
mentation

(a)

(b)

Figure 3: LV techniques comparison. (a) Quantitative analysis; (b) Core architectural differences

virtual hardware devices and related drivers produces non-
negligible performance overhead.

Differently, containers implement processes isolation at the
OS level, thus avoiding the virtualization of hardware and
drivers [6]. In specific, containers share the same OS kernel
with the underlying host machine, meanwhile making it pos-
sible to isolate stand-alone applications that own independent
characteristics, i.e., independent virtual network interfaces,
independent process space, and separate file systems. This
shared kernel feature allows containers to achieve a higher
density of virtualized instances on a single machine thanks to
the reduced image volume.

Containers have achieved much more relevance and prac-
tical use recently with the advent of Docker, a high-level
platform that has made containers very popular in a short
time frame. Docker introduces an underlying container engine,
together with a practical and versatile API, which allows
easily building, running, managing, and removing container-
ized applications. A Docker container, which is a runnable
instance of Docker image, uses a base image stored in specific
private or public registries. Docker uses an overlay file-system
(UnionFS) to add a read-write layer on top of the image.
UnionFS allows to store Docker images as a series of layers
and consequently saving disk space. In fact, the different image
layers can be cached in the disk allowing to speed up the
building process, and re-use the same cached layer for the
building of different images.

The lightweight features embedded in containers ease the
integration of such technology in various networking fields.
In specific to IoT edge computing, containers can enable us

to efficiently run containerized applications even in devices
characterized by lower processing capabilities, such as Single-
Board Computers [7].

B. Library Operating Systems: Unikernels
Unikernels are single-purpose appliances that are at compile

time specialized into standalone kernels [8], and sealed against
modification after deployment. The concept of unikernels has
emerged from the observation that most applications running
in the cloud do not require many of the services coming with
common operating systems. Additionally, unikernels provide
increased security through a reduced attack surface and better
performance by dropping unnecessary components from the
applications.

Unikernels were designed initially with the cloud in mind
but their small footprint and flexibility make them fit also
well with the upcoming IoT edge ecosystem as illustrated
through different research attempts [9]-[2]. The main differ-
ences among existing unikernel implementations sprout from
the underlying programming language in use. MirageOS [8]
and HaLVM are unikernels based on functional languages
with pervasive type-safety in the running code. Other solutions
like IncludeOS and ClickOS are C++ unikernels; the former
offering a C++ platform to which bind generic applications,
while the latter is highly specializing in offering dynamic
network processing (based on Click modular router). OSv is
based on Java and therefore heavier than the others, but more
flexible.

Security and unikernels are tightly coupled. The attack
surface of a unikernel is strictly confined to the application
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Figure 4: a) Vehicular Edge Computing scenario in its entirety. Vehicular-to-Edge (V2E) interactions examples: b) Car-to-Car
V2E communication, c) and Base Station-to-Car V2E communication; d) Container-based virtualization is used for an easier
OBU’s customization. Furthermore, within the same vehicle orchestration tools are exploited for task offloading among different
OBUs.

embedded within. There is no uniform operating layer in a
unikernel, and everything is directly compiled into the applic-
ation layer. Therefore, each unikernel may have a different
set of vulnerabilities, which implies that an exploit that can
penetrate one may not be threatening the others. Unikernels are
principally designed to be stateless. Therefore, they are perfect
to embed generally algorithms (e.g. compression, encryption,
data aggregation functions) or NFV.

V. USE-CASE SCENARIOS

In this section, we present three use cases matching the
scenarios presented in Figure 1. Additionally, we illustrate the
reasons for adopting a specific LV technology for each case.

A. Towards the Vehicular Edge Computing

The importance of virtualization in vehicular scenarios has
been widely acknowledged in the past. Vehicular Cloud-
Computing (VCC) represents an efficient architectural model
in supporting the Internet of Vehicles (IoV) [10]. However, we
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The air pollution server (datacenter) selects 
and offloads tasks towards the edge stations. 
Part of the complete application logic running 
in the Cloud is selected, extracted and recom-
piled in the shape of a unikernel. Each func-
tionality is embedded in a different unikernel 
(MirageOS).

Edge devices are connected to specific sub-
sets of sensor nodes, geographically distrib-
uted. Therefore, from each edge device we can 
gather insights about the conditions of a specif-
ic area of the city.

Each MirageOS unikernels run inside the 
Xen Hypervisor as a ParaVirtualized Machine 
(PVM). In this case, it embeds the logic to cal-
culate the AQI (or part of it). Additionally, there 
is an orchestration layer that monitors the exe-
cution of the unikernels and communicates with 
the Cloud.

Figure 5: Air pollution scenario. An offloadable task is Air Quality Index (AQI) calculation, a number used by government
agencies to communicate to the public how polluted the air currently is or how polluted it is forecast to become. Calculation
of the AQI can be executed locally by edge nodes enhancing real-time monitoring.

envision the need to establish a Vehicular Edge Computing
(VEC) paradigm, which will play a crucial role in future
development of more efficient Vehicle-to-Everything (V2X)
systems. VEC can cope with the increasingly strict require-
ments of V2X applications, and will rely on the growing pro-
cessing capabilities that the different actors of IoV encompass,
including cars’ On-Board Unit (OBU), Edge Elements (EEs),
Cloud Services. In VEC environments, various units can play
the role of EE. Base stations, IoT gateways, and other vehicles
themselves can operate as EE by executing specific tasks
e.g., lightweight data mining operations, generic off-loading
processing, dashcam images filtering, etc. In such context, LV
can enable the VEC paradigm, and be exploited in multiple
scenarios, spanning from an efficient and flexible customiza-

tion of cars’ OBU to Vehicular-to-Edge (V2E) interactions.
Figure 4 depicts the VEC scenario in its entirety (Fig. 4a),

together with practical examples of the way in which LV can
be employed in V2E Interactions (Fig. 4b-c) and distributed
In-Car Platforms (Fig. 4d).

V2E Interactions. Differently from already well-
established Vehicular-to-Vehicular (V2V) communication,
V2E aims to encompass computation offloading, tasks
outsourcing, and software management operations. In
practice, LV-enabled OBU can execute a specific task issued
by another vehicle or any other EEs, and vice versa, as shown
in the two examples shown in Fig. 4b-c.

In-Car Platforms. Container-based virtualization can be
used for OBUs customization. It offers high flexibility in the
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platform’s software management, and allows overcoming the
complex software updating procedures required by OBUs [11].
Through conventional VM, car manufacturers can access all
CAN (Controller Area Network) bus sensors through OBD and
dashcam. However, given OBUs are embedded systems with
limited computational resources, LV’s lightweight features
avoid the performance overhead and allow scaling up/down
the running applications according to specific priorities. Fur-
thermore, by taking into consideration that several OBUs can
be distributed within a car, virtualization orchestration tools
can be used for OBUs’ tasks outsourcing — still by following
specific OBU resource management policies. More details
about the usage of LV in In-Car platforms can be found in
Fig. 4d

B. Edge Computing for Smart City
In the context of Smart City, the measurement of envir-

onmental data has become an important issue especially for
highly crowded metropolis. Currently, air pollution monitoring
is achieved with a sparse deployment of stationary, expensive
measurement units embedding both sensors1 and computing
units. Air pollution is predicted based on the measured data
in combination with complex mathematical models [12]. Since
the cost of deploying and maintaining such pollution station
are often prohibitive, we envision crowd-sensing as a tangible
solution that combines LV and edge computing.

Edge computing offers resources close to the crowd-sensing
entities, which can offload through a direct connection their
collected data without using a mobile connection. LV al-
lows to offload, distribute and execute part of the required
mathematical computation on the EEs without worrying about
compatibility issues. For instance, multiple LV images can
be created on demand, each one containing only the code
necessary to process the data of a single sensor. The partial
results will be then subsequently uploaded to a more powerful
edge device (e.g. edge data-center) to be merged. Figure 5
provides more details regarding how unikernels can support
both the execution of specific algorithms related to air pol-
lution control and provide pre-processing of input data for
simulations running in the Cloud.

The described approach can reduce the load on the core
network, end-to-end latency and also the cloud (and air
pollution stations) provisioning costs. Regarding specific LV
technology, we consider unikernels a promising candidate. The
algorithms used to assess air pollution levels are generally
static and stateless. In other words, they can be considered as
black-boxes with a defined range of inputs/outputs. In case of
necessity, the algorithm can be simply changed by replacing it
with a new unikernel instance without incurring a long network
transfer time2.

C. Augmented Reality
Wearable devices are typically resource-constrained com-

pared to computer hardware of same vintage PC. The core

1Usually gas detection sensors (NO, NOx , O3, CO, CO2 and particulate
matter) plus humidity, rain detection and wind speed/direction.

2Unikernels are, by design, much smaller than other virtualization tech-
niques.

features of a wearable/mobile device are light-weight, comfort,
design and battery life. CPU speed, memory and system
capabilities are only secondary, contrary to what are required
by the PC market. Therefore, it is not surprising that, overall,
wearable/mobile devices are not designed to run computation-
ally intensive tasks.

A common approach to solve the problem is offloading
AR tasks to cloud services in order to reduce the power con-
sumption on the device and cope with, eventually, insufficient
mobile processing. The drawback is that using cloud service
will introduce additional latency, which is crucial for real-time
applications. This is especially important for AR applications,
where responsiveness and user immersion are paramount.
Humans are extremely sensitive to delays affecting real-time
interactions (e.g., a phone call). Different studies revealed
the speed at which the human brain can identify faces in a
dark scene and the requirements of virtual reality application
to achieve perpetual stability [13]-[14]. Longer delays in
such highly interactive and multimedia-based applications will
lower the end-users’ experience.

An use cases where there is a strong interplay between
local computational resources and AR (or, broadly speaking,
computer vision) is augmented windshields for autonomous
vehicles. The driver, at this point, passive, might shift is
attention completely on the windscreen instead of checking
the console in search for speed information. Additionally, the
windshield will also provide traffic conditions information,
personal agenda, news feed, gaming interfaces, social networks
and so forth. In order to craft and manage such a visually-rich
experience, an edge board mounted on the car is considered
necessary.

Therefore, with the support of edge computing and LV,
we have the possibility to offload expensive image processing
tasks to EEs in proximity instead of resorting to the cloud back
ends. Therefore, we can limit the latency impact, assuming
that the computation time is device-invariant. The use of
virtualization in such context is additionally motivated by the
following factors: multi-tenancy (i.e., multiple users executing
multiple tasks) and tasks isolation for privacy.

For this specific use case, a combination of Docker and
Unikernel represents a potential approach, as shown in Figure
6. A Docker image containing multiple unikernel can be
composed and shipped, each one representing a different
AR stage/task. Therefore, the Docker image can offer the
orchestration and control API to external applications while,
under the hood, unikernels would take care of running the
required computations.

VI. OPEN ISSUES AND CHALLENGES

In this section, we discuss the technical challenges for
integrating LV into IoT edge computing and further identify
open directions for future research.

A. Orchestration and Monitoring

Orchestration of edge elements (EE) and cloud architectures
brings several challenges. Edge-IoT scenarios require specific
tools to deal with the different processor architectures and
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unikernels. In the figure, a unikernel is represented by the “f” 
box.

ff f f

f f f

f f f
ffff

Matching Phase pipeling phase Execution phase

Each edge device hosts the same environment, but the 
collection of unikernel is different based on the capabilities 
(I/O interfaces, CPU, RAM) and available data possesed by 
the hosting device.

1. Matching Phase. It’s the phase during which the 
orchestrator identify a group of unikernels (each represent-
ing a specific function) to be pipelined.
2. Pipelining Phase. In this phase, the selected unikernels 
are opportunely pipelined based on their function.
3. Execution Phase. The pipeline is started and, after 
termination, the result is ready to be sent to devices in 
proximity and to the Cloud.

A B C

Figure 6: A. Biker receiving personalized advertisements rendered in augmented reality on his smart glasses; B. A smart car
populating its augmented windshield with contextualized, live feed information; C. Augmented smart home, where we control
IoT devices in proximity through virtual interfaces.

storage capacity of EEs and cloud services. Controlling the
network traffic requires to orchestrate cloud and edge, an
increasingly challenging task with manifold EEs deployed.
Hence, it becomes crucial deploying lightweight orchestration
modules that do not overburden the EE, and that seeks
a fair balance between synchronization and network load.
Other key aspects concern the definition of optimized policies
for an efficient vertical scaling, in which applications are
automatically prioritized and scaled up/down between EE and
Cloud, according to specific QoS requirements or computing
resources saturation of EEs. Mobility is also a relevant aspect.
User devices might move in relation to the edge-processing
device providing the service. Therefore, the service may need
to be re-deployed multiple times at different locations to serve

transparently mobile users. In particular, if the service is
specific to an individual user, the number of transfers may
be high. Destroying and re-deploying is preferred instead of
moving the service together with its running state. For cloud-
native service the general recommendation is to avoid storing
state locally or only to use disposable state. For services
requiring local state, the service must store the current state at
an external stable location before exiting and load it again
on restart. Particular attention must be paid to ensure that
the new edge node has available resources for serving the
new device, and the platform may provide alternative nodes
or prioritization among services in case of over allocation.

As regards as monitoring solutions, both technologies need
high-performing, lightweight and scalable monitoring frame-
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works. This requirement is strictly related to the fact that
these tools may need to run on EEs characterized by lower
resource computation capabilities. Another key requirement
for monitoring engines is the possibility to track on real-
time the individual resources’ of each virtualized instance.
Implementation of such frameworks becomes, in parallel with
orchestration mechanisms, crucial in resource optimization
and on developing efficient edge-cloud instances-placement
algorithms and policies.

B. Security and Privacy

In the analyzed domain, one challenge is the certification
of virtualized applications. We need to guarantee their au-
thenticity and validity, by including a signing and validation
infrastructure to discriminate legit from tampered instances.
Without such mechanisms, there is the concrete risk of execut-
ing malicious code and infringe the security requirements. It is
crucial to encourage the development of lightweight security
mechanisms, which take into account the strict requirements
of IoT applications/scenarios and not impair the lightweight
features of the analyzed virtualization technologies, preserving
their capacity to not generate performance overhead. From
the privacy perspective, EEs may be shared between multiple
tenants. It is crucial to be able to isolate tenants’ data, but also
controlling the use of tenants’ dedicated resources — e.g.,
CPU and memory. Finally, sharing data between tenants at
the EE level, without going through the cloud-infrastructure,
requires the definition of EE policies and specific access
control mechanisms.

C. Standards and Regulations

IoT and EC are developing faster than standards and
regulations. The presence of multiple industry partners and
researchers working in this field gave birth to different rami-
fications and interpretations of the same paradigm. Without
standards and regulations, merging different approaches will
be a non-trivial task exacerbated by the heterogeneity of the
involved technologies. For LV technologies, lately there has
been a growing effort to lay some guidelines and describe the
challenges in the process of building NFV platforms [5]. Nev-
ertheless, this only partially covers the type of functionalities
we advocate to offload to EE nodes. Therefore, we consider
necessary an additional standardization effort which seeks to
lay down precise guidelines towards the employment of LV in
a wider range of IoT use-case scenarios.

D. Elasticity in service provisioning

This feature is strictly dependent to the LV engines capacity
of quickly allocating/deallocating virtualized instances. Data
reported in Table 3a clearly show how both container and unik-
ernel can promptly scale up/down. Furthermore, LV API also
allow to freeze the execution of an instance and quickly restore
it through checkpoint/restore mechanisms. However, there is
still a lack of research to evaluate the interactions among
multiple EEs, without neglecting that current LV engines
implementations not provide fully support for live migration.

Specific frameworks that support proactive service migrations
for stateless applications have been already proposed [15].
However, support for stateful applications migration need to
be soon integrated for fully exploiting LV benefits in these
scenarios.

E. Management Frameworks and Applications portability

Employment of containers technologies have had disruptive
rise in the last years, and the enormous effort that open source
communities have provided on continually improving fully
featured management frameworks has paid off. Unikernels
seem to be still not enough mature for being included in
production-ready environments, and a greater effort is required
for featuring the same portability of containers. Packaging
applications through unikernel may require an implementation
effort that somehow slows down, and in some cases limits, the
adaptability towards existing software and hardware platforms.
This difference comes from the different way in which the
two technologies are built. Containers are application agnostic
while unikernels are limited by the programming language and
libraries exposed by the underlying minimalistic OS.

F. Data Storage

Containers and, in particular, unikernels are not suitable
for storing persistent data, such as data collected from IoT
sensors. Moreover, storing important data on edge nodes can
be risky both because of the volatile nature of edge nodes and
because of the security risks related to easier physical exposure
of the nodes. Therefore, data typically needs to be stored in
centralized nodes and retrieved on demand. This may reduce
the feasibility of LV based edge computation in very data
intensive applications. Moreover, some applications requiring
nodes to access data of all other nodes data, e.g. for distrib-
uted analytics, may be unfeasible to distribute. Automatically
optimizing the data storage location of distributed applications
is a topic requiring further research. On the other hand, many
IoT applications use volatile data locally while persistent data
can be minimized and stored centrally.

G. Telco Industry Readiness and Perspectives

The telecommunication sector is currently in a major
paradigm shift moving in the direction of softwarization of
the former hardware based network elements – a concept
called NFV [4]. As a first step, the current network functions
are directly mapped to corresponding virtualized versions
implemented as VMs. The fifth generation (5G) will move
toward a more cloud native approach, where different net-
work functions are divided into smaller components that can
be individually deployed and scaled and communicate to
each other using a message bus. Using MEC as a platform,
virtualized network functions (VNFs) can be placed at the
edge of the network, and decomposition further encourages
the use of LV technologies and the allocation of individual
service components to the edge. From the operator perspect-
ive, edge typically means the base station, but virtualization
on Customer Premise Equipment (CPE), such as residential
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gateways, may extend the edge further. NFV is the main
driver for edge computing in the mobile networks, and a
necessity for opening the operator network for third party
applications. While operators may have difficulties competing
with established players in the cloud market, their presence
close to the user make them more competitive for edge-
dominated computation. The adoption of LV technologies in
telco networks requires a change of mindset in the industry but
also technology questions remain for ensuring the reliability
and security required for telecommunication networks. As
unikernels can be deployed on the same hypervisors as VMs
with minor impact on orchestration infrastructure, they are
more likely than containers as replacements for VMs.

VII. OUTLOOK

In this article, we examine the challenging problem of
integrating LV with IoT edge networks. We first discuss
which are the current issues involving EC and IoT network
architectures. Therefore, we present three different IoT use-
cases, in which LV solutions can bring a set of benefits and
a desirable design flexibility. Our analysis provides a clear
holistic vision of such integration, which promotes innovative
network designs to fully exploit the advantages of LV and IoT
resources. Finally, we also discuss key technical challenges
and identify open questions for future research in this area.
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